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Abstract
Populations consist of individuals living in different states and experiencing temporally
varying environmental conditions. Individuals may differ in their geographic location,
stage of development (e.g., juvenile versus adult), or physiological state (infected or
susceptible). Environmental conditions may vary due to abiotic (e.g. temperature)
or biotic (e.g. resource availability) factors. As the survival, growth, and reproduc-
tion of individuals depend on their state and environmental conditions, environmental
fluctuations often impact population growth. Here, we examine to what extent the
tempo and mode of these fluctuations matter for population growth. We model popu-
lation growth for a population with d individual states and experiencing N different
environmental states. The models are switching, linear ordinary differential equations
x ′(t) = A(σ (ωt))x(t)where x(t) = (x1(t), . . . , xd(t)) corresponds to the population
densities in the d individual states, σ(t) is a piece-wise constant function represent-
ing the fluctuations in the environmental states 1, . . . , N , ω is the frequency of the
environmental fluctuations, and A(1), . . . , A(n) areMetzler matrices representing the
population dynamics in the environmental states 1, . . . , N .σ(t) can either be a periodic
function or correspond to a continuous-timeMarkov chain. Under suitable conditions,
there exists a Lyapunov exponent �(ω) such that limt→∞ 1

t log
∑

i xi (t) = �(ω) for
all non-negative, non-zero initial conditions x(0) (with probability one in the random
case). For both random and periodic switching, we derive analytical first-order and
second-order approximations of�(ω) in the limits of slow (ω → 0) and fast (ω → ∞)
environmental fluctuations. When the order of switching and the average switching
times are equal, we show that the first-order approximations of �(ω) are equivalent in
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the slow-switching limit, but not in the fast-switching limit. Hence, the mode (random
versus periodic) of switching matters for population growth. We illustrate our results
with applications to a simple stage-structured model and a general spatially structured
model. When dispersal rates are symmetric, the first-order approximations suggest
that population growth rates decrease with the frequency of switching, which is con-
sistent with earlier work on periodic switching. In the absence of dispersal symmetry,
we demonstrate that�(ω) can be non-monotonic inω. In conclusion, our results show
that population growth rates often depend both on the tempo (ω) and themode (random
versus deterministic) of environmental fluctuations.

Keywords Lyapunov exponents · Matrix models · Stochastic and periodic
switching · Population growth

1 Introduction

Central tomany questions in ecology, evolution, and epidemiology is the identification
of how environmental conditions determine population growth. This growth depends
on the survival, growth and reproduction of individuals, which in turn depends on the
state of an individual (i-state). Individuals may differ in their i-state based on their
geographic location, stage of development, genotype, or behavior (DeAngelis 2018).
One way to account for these difference in i-state on the population state (p-state) is
using Matrix Population Models (MPM) (Caswell 2001; DeAngelis 2018). In these
models, there are a finite number d of i-states and the p-state corresponds to the vector,
x = (x1, x2, . . . , xd), of population densities. For continuous-time MPMs, a matrix
A with non-negative off diagonal elements, ai j with i �= j , define the rates at which
individuals in state j contribute to individuals in different state j . These contributions
may correspond to individual’s transition to the other state (e.g., dispersing from one
geographic location to another, developing from one stage to another, changing their
behavior) or producing individuals of the other state. Diagonal elements, aii , of the
matrix A can be positive, zero, or non-negative and correspond to the net rate at which
individuals leave their current state (including death) and produce more individuals of
the same state. Under constant environmental conditions, the continuous-time MPM
is a linear system of differential equations

x ′(t) = Ax(t) (1)

where A, with its non-negative off-diagonal entries, is called a Metzler
matrix (Mitkowski 2008). These continuous-time MPM commonly arise when lin-
earizing a disease-free equilibrium for an epidemiological model, the extinction
equilibrium of a demographicmodel, or a fixation equilibrium of a population genetics
model (Bürger 2000; Hethcote 2000; Kon et al. 2004). When the matrix A is irre-
ducible, the Perron-Frobenius Theorem implies that for any non-negative, non-zero
initial condition x(0)
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lim
t→∞

1

t
ln
∑

i

xi (t) = λ(A) (2)

where λ(A) is the spectral abscissa of A i.e. the maximum of the real parts of the
eigenvalues of A. Hence, λ(A) determines the long-term growth rate of the population.
In particular, when λ(A) is positive, the population persists and grows. When λ(A) is
negative, the population declines exponentially quickly to the extinction state.

Most populations experience fluctuations in environmental conditions such as tem-
perature, precipitation, and nutrient availability. As these environmental conditions
determine the survival, growth, and reproduction of individuals, environmental fluc-
tuations lead to fluctuations in demographic rates. Understanding the implication of
these fluctuations on population growth is an active topic (Tuljapurkar 1990; Boyce
et al. 2006; Fay et al. 2020; Hilde et al. 2020; Kortessis et al. 2023b; Paniw et al.
2018; Schreiber 2023; Tuljapurkar and Haridas 2006). Almost all of this earlier work,
see, however, Benaïm and Strickler (2019), Benaïm et al. (2023a) and Benaim et al.
(2024), is for discrete-time MPMs. One of the simplest approaches to modeling this
time-dependency in continuous-time MPMs is to allow A in (1) to switch between
a finite number of Metzler matrices A1, A2, . . . , AN corresponding to N environ-
mental states e.g. summer versus winter, wet versus dry period. If σ(t) denotes the
environmental state at time t , then we get a switched, continuous-time MPM

x ′(t) = Aσ(t)x(t).

If σ(t) is a periodic piecewise constant function or given by an irreducible Markov
chain, then there exists the dominant Lyapunov exponent � such that

� = lim
t→∞

1

t
ln
∑

i

xi (t) (3)

holds (with probability one in the random case) for any non-negative, non-zero initial
condition x(0) (see Lemmas 1 and 2 below).As in the case of constant environment (1),
the Lyapunov exponent measures the long-term population growth rate of the system.
In particular, by a linearization procedure, it allows one to determine the persistence
or extinction for switched non-linear flows (Benaïm and Strickler 2019).

Environmental fluctuationsmay occur at daily, yearly, andmultidecadal time scales.
This raises the question to what extent does the rate of switching between environmen-
tal states influence the population growth rate �? To address this question, consider
a fixed choice of Meltzer matrices A1, . . . , AN and environmental trajectory σ(t).
To manipulate the rate of switching, let ω > 0 be the frequency of environmental
switching, in which case our MPM becomes

x ′(t) = Aσ(ωt)x(t). (4)

Let �(ω) denote the dominant Lyapunov exponent (3) associated with the MPMwith
frequency ω. When switching is fast (ω → ∞), solutions of the switching model (4)
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converge to the solution of an ODE x ′ = Āx where the averagedmatrix Ā corresponds
to the appropriate convex combination of thematrices Ai . In this limit,�(ω) converges
to λ( Ā) (Benaïm et al. 2014, 2023b; Benaim et al. 2024; Benaïm and Strickler 2019;
Chitour et al. 2021; Du et al. 2021). In contrast, when the switching is slow ( ω → 0),
the Lyapunov exponent converges to a weighted average of the Lyapunov exponents
λ(Ai ) of the matrices Ai (Benaïm et al. 2023b; Benaim et al. 2024). As the Lyapunov
exponents of these limits are, in general, different, these earlier results imply that
whether populations grow or decline can depend on the frequency of environmental
switching.

These earlier results raise two interesting questions: Do the population growth rates
increase or decrease as one approaches these limits? To what extent does the answer
depend on whether the environmental switching is periodic or random?Whether peri-
odic switching or random switching between some matrices yields the same behavior
is a recurrent question in the study of switched linear systems. For example, Chitour
et al. (2021) provides conditions on thematrices A1, . . . , AN underwhich themaximal
Lyapunov exponent obtained by considering the worst deterministic signal σ is strictly
greater than the maximal probabilistic Lyapunov exponent obtained by considering
the worst Markov chain. In particular, this shows that there exist matrices A1, . . . , AN

such that a suitable deterministic switching signal makes the system (4) unstable (the
population persists), while it is stable for all Markovian signals (the population goes
extinct). For applications in population dynamics, one is often interested either in the
sign of the Lyapunov exponent (i.e. growth or extinction) or in its monotonicity with
respect to some key parameters. For specific models, these questions can be answered
in the fast- or slow-switching regimes with the explicit formula obtained in the present
work. In particular, the monotonicity of the population growth in the switching rate is
explicitly given in these two regimes by the sign of the first-order term in its expansion.

To address these questions, let �p(ω) and �M (ω) denote the Lyapunov exponents
in the periodic case and the Markovian case, respectively. For fast Markovian (ran-
dom) switching, Monmarché and Strickler (2023) answered one of these questions
by deriving an asymptotic expansion of �M (ω) in terms of 1/ω. Here, we address
the remaining questions by deriving an asymptotic expansion of �p(ω) in terms of
1/ω, and deriving first-order expansions in terms of ω of �p(ω) and �M (ω) is the
slow-switching limit. For slow switching, we show that the periodic and random
approximations of �(ω) are equivalent. However, in the limit of fast-switching, these
approximations are not equivalent. In fact, when there is fast switching between two
environments, we show that the first-order correction in terms of 1

ω
always vanishes

and derive a second-order correction in terms of 1
ω2 . In contrast, the first-order term

for Markovian switching is non-zero in general. We present these results in Sect. 3
after providing a more detailed description of the periodic and Markovian models in
Sect. 2. To illustrate the applicability of our approximations, we apply them to a simple
stage-structuremodel and explore their implications for spatially structure populations
in Sect. 4. Consistent with previous work of Katriel (2022) for periodic environments,
our approximations suggest that population growth rates increase with switching rates
for spatially structured populations with symmetric dispersal. However, we use these
approximations to illustrate how asymmetric dispersal can result in a non-monotonic
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relationship between switching frequency and population growth rates. Proofs of the
main results are in Sects. 6 and 8.

2 Lyapunov Exponents of Periodic and Random SwitchingModels

Here, we provide more details about the switching continuous-time matrix population
model in (4) and their Lyapunov exponents �(ω) in (3). For these models, N ≥ 1
corresponds to the number of environmental states, �1, N� = {1, 2, . . . , N } is the set
of environmental states, and the demographicmatrices A1, A2, . . . , AN are d×dMet-
zler matrices i.e. have non-negative off-diagonal entries. We consider two approaches
for specifying the piece-wise constant function σ(t) that takes values �1, N�. One
approach is to assume that σ(t) is a periodic, piecewise constant, right-continuous
function. The other approach is to assume that σ(t) corresponds to a continuous-time
Markov chain on �1, N�. These approaches are described in detail below.

The state space for the matrix population model is the non-negative cone R
d+ =

[0,∞)d of Rd . If Ai is Metzler for all i in the model (4), then x(0) ∈ R
d+ implies that

x(t) ∈ R
d+ for all t ≥ 0 i.e. Rd+ is forward invariant for the dynamics.

For each form of the model, we also present results ensuring the existence of
dominant Lyapunov exponent �(ω). To do this for the periodic case, let r(A) denote
the spectral radius of A (i.e. the eigenvalue of A with the largest absolute value) and
λ(A) denote the spectral abscissa of A (i.e. the eigenvalue of A with largest real part).
For a Metzler and irreducible matrix A, we can apply Perron-Frobenius Theorem to
A + r I for some large enough r , to conclude that λ(A) is a simple eigenvalue of
A. Associated with A is a unique positive right eigenvector x with

∑
i xi = 1 and a

unique left eigenvector y with
∑

xi yi = 1.

2.1 The Periodic Case

For the periodic version of the model (3), we assume that the function σ : R → �1, N�
is piece-wise constant, right-continuous, has period 1 and successively takes the values
1, . . . , N as follows

σ(t) = i for all t ∈ [τi , τi+1),

where τ0 = 0 and τi+1 = τi + αi for some αi ≥ 0 satisfying
∑N

i=1 αi = 1. αi

represents the proportion of time spent in the environmental state i during a period of
length T :=ω−1.

LetM(ω) be themonodromymatrix associatedwith themodel over the time interval
[0, 1]:

M(ω) = eω−1αN AN · · · eω−1α1A1

where eM denotes thematrix exponential of thematrixM . For all initial conditions x(0)
of (4), one can verify that x(ω−1) = M(ω)x(0). M(ω) is a matrix with nonnegative
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entries, so that its principal eigenvalue λ(M(ω)) is well defined.We have the following
(see, e.g. (Benaïm et al. 2024, Thm. 2))

Lemma 1 If the matrices A1, . . . , AN are Metzler and
∑N

i=1 Ai is irreducible, then
(3) holds for all non-zero initial conditions x(0) ∈ R

d+ and equals

�p(ω) = ω log (λ(M(ω))) .

2.2 TheMarkovian Case

For random environmental switching, let σ(t) be a continuous-time Markov chain
with transition rates ξi j ≥ 0 from state i to state j �= i . Let 	 be the transition matrix
with entries ξi j for i �= j and ξi i = −∑

j �=i ξi j . Assume	 is irreducible in which case
there is a unique invariant probability measure α = (α1, . . . , αN ) in the environmental
state space �1, N�. Consider (x(t), σ (ωt))t�0 where x solves (4). (x(t), σ (ωt))t�0 is
known as a Piecewise Deterministic Markov Process (PDMP).

For a non-negative, non-zero initial condition x(0) ∈ R
d+, decompose x(t) as

x(t) = ρ(t)θ(t) where ρ(t) = 1 · x(t) > 0 with 1 = (1, . . . , 1) ∈ R
d and θ(t) =

x(t)/ρ(t) ∈ � = {x ∈ R
d+, x1 + · · · + xd = 1}. In this coordinate system, the

switching model (4) is

ρ′(t) = (1 · Aσ(ωt)θ(t))ρ(t), θ ′(t) = Fσ(ωt)(θ(t)) (5)

with

Fi (θ) = Aiθ − (1 · Aiθ)θ. (6)

The following is proven in Benaïm et al. (2023b).

Lemma 2 Assuming that the matrices A1, . . . , AN are Metzler and
∑N

i=1 Ai is irre-
ducible, then the Markov process (θ(t), σ (ωt))t�0 admits a unique invariant measure
μω on � × �1, N� and, moreover, the limit (3) exists almost surely, is deterministic,
independent from the initial condition x(0) ∈ R

d+ \ {0} and is given by

�M (ω) =
∫

�×�1,N�
1 · Aiθ μω(dθdi). (7)

3 General Results

Our most general results are first-order expansions of �p(ω),�M (ω) in terms of ω

in the slow switching limit (ω → 0) and in terms of 1
ω
in the fast switching limit

(ω → ∞). In the case of only two environments (N = 2), we show that the first-order
correction term of �p(ω) is zero in the fast switching limit, and derive a second-
order approximation in terms of 1

ω2 . We also provide a simpler representation of the
first-order approximation of �M (ω) in the random case with two environments.
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3.1 First Order Expansions of3p(!),3M(!) for Fast and Slow Switching

For the slow limit (ω → 0), we need the right eigenvectors xi and the left eigenvectors
yi of Ai associated with the eigenvalue λ(Ai ). We assume that these eigenvectors are
normalized so that xᵀ

i yi = 1 and 1
ᵀ
d xi = 1 where 1d is the column vectors with all

entries equal to 1. For the fast limit (ω → ∞), define the average matrix

Ā =
N∑

i=1

αi Ai

with weights α = (α1, . . . , αN ) given by αi = τi+1 − τi in the periodic settings of
Sect. 2.1, or by the invariant measure of σ in the Markovian settings of Sect. 2.2. Let
x̄ and ȳ the right and left eigenvectors of Ā associated with the eigenvalue λ( Ā) such
that x̄ᵀ ȳ = 1 and 1

ᵀ
d x̄ = 1.

To state our main results, recall that the matrix commutator of two d × d matrix A
and B is

[A, B] = AB − BA.

Furthermore, we need a generalized inverse for non-invertible matrices.

Definition 1 Let M be a matrix of index 1, which means that M and M2 have the same
rank. Then, group inverse of M is the unique solution X to the matrix equation

MXM = M, XMX = X , XM = MX .

When it is well defined, we denote the group inverse of M by M−1.

Importantly for us, if A is an irreducible Metzler matrix, then M = A − λ(A)I is an
index 1, singular matrix. One way of computing M−1 is to use its rank factorization.
Specifically, if M has rank k < d, then there is a d × k matrix C with rank k and a
k × d matrix F with rank k such that M = CF . Then M−1 = C(FC)−2F . There are

multiple ways to obtain the ranking factorization. For example, if M = U

(
k 0
0 0

)

V

is a singular value decomposition of M where k is a k × k diagonal matrix with the
non-zero singular values of M , then one can choose C to be the first k columns of U
and F to be the matrix product of k and the first k rows of V .

The following theorem provides first-order expansions of the Lyapunov exponents
�p,�M in the slow and fast limits.

Theorem 1 Let A1, . . . , AN be Metzler matrices such that Ā is irreducible.

1. (Slow periodic switching) If A1, . . . , AN are irreducible, then

�p(ω) =
N∑

i=1

αiλ(Ai ) + cspω + o
ω→0

(ω) (8)
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with

csp =
N∑

i=1

ln
(
xᵀ
i yi+1

)
where yN+1 = y1.

2. (Fast periodic switching)

�p(ω) = λ
(
Ā
)+ c f pω

−1 + o
ω→∞(ω−1) (9)

with

c f p = ȳᵀ

⎛

⎝1

2

∑

1≤i< j≤N

α jαi [A j , Ai ]
⎞

⎠ x̄ .

For the random switching case, assume, without loss of generality that,
max j

∑
i �= j ξi, j = 1, and define Q to be the jump matrix given by qi, j = ξi, j for

i �= j and qi,i = 1 −∑
j �=i qi, j . Then

3. (Slow Markovian switching) If A1, . . . , AN are irreducible, then

�M (ω) =
N∑

i=1

αiλ(Ai ) + csMω + o
ω→0

(ω) (10)

with

csM =
N∑

i, j=1

αi qi j ln(y
ᵀ
j xi ).

4. (Fast Markovian switching)

�M (ω) = λ
(
Ā
)+ c f Mω−1 + o

ω→∞(ω−1) (11)

with

c f M = ȳᵀ

⎛

⎝
∑

i, j

αi (Q − I )−1
i, j A j (x̄ ȳ

ᵀ − I )Ai

⎞

⎠ x̄ .

The fast Markovian case (11) follows from (Monmarché and Strickler 2023,
Proposition 2). The proofs for the other three cases are given in Sect. 6.

Remark The signs of the first-order terms suggest whether the Lyapunov exponents
should be increasing or decreasing in the slow and fast switching limits. To ensure the
monotonicity of �p or �M , it is necessary to prove that these functions are C1 close
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to 0 and ∞. However, this proof is beyond the scope of the paper, even though we
believe it is true, based on similar regular results existing in the literature (see, e.g.
(Ruelle 1979, Theorem 3.1) or (Arnold et al. 1994, Corollary 4.11)) and numerical
simulations.

Correspondence between periodic and random cases. For the slow switching case,
there is a strong correspondence between the periodic and random approximations, as
we now show. Let αi be given for the periodic version of the model (see Sect. 2.1).
The natural, random counterpart of this deterministic model follows the environmental
states in the same order and, on average, remains in each environmental state for
the same amount of time. To this end, let β = mini αi and define the transition
matrix 	 by ξi,i+1 = β/αi for 1 ≤ i ≤ N − 1, ξN ,1 = β/αN and all other off-
diagonal coefficients are 0. This transition matrix is such that the Markov process
σ visits successively the states 1, . . . , N , its unique invariant probability measure is
α = (α1, . . . , αN ), and maxi

∑
j �=i ξi, j = 1. The average time for σ to visit the N

successive states (corresponding to one period of the deterministic signal) is 1/β.
Therefore,�M (ω) should be compared with�p(βω). The asymptotic expansion (10)
for the slow switching rate reads

�M (ω) =
N∑

i=1

αiλ(Ai ) + ω
∑

i, j

αi qi, j ln(y
ᵀ
j xi ) + o

ω→0
(ω)

=
N∑

i=1

αiλ(Ai ) + ωβ

N∑

i=1

ln(yᵀ
j xi ) + o

ω→0
(ω),

(12)

which is exactly the formula of �p(βω) in the periodic case (8). This correspondence
does not occur in the fast switching regime. Indeed, even when N = 2, Propositions 1
and 2 in the next section provide examples where the periodic and Markovian cases
differ at first order.
The problem with reducible Ai in the slow limit. In Theorem 1, the slow switching
formulae are proven under the additional assumption that each Ai is irreducible. To
see why this assumption is necessary, we provide an example involving three reducible
2 × 2 matrices such that limω→0 �p(ω) �= ∑

i αiλ(Ai ). That is, expansion (8) can

fail at the zeroth order for reducible matrices. Consider the three, reducible matrices

A1 =
(
2 1
0 1

)

, A2 =
(
1 0
0 2

)

, and A3 =
(
2 0
1 1

)

with λ(A1) = λ(A2) = λ(A3) = 2. Let α1 = α2 = α3 = 1/3. The matrix Ā =
1
3

∑
i Ai is irreducible. Writing T = ω−1, one can compute

3∏

i=1

eAi T /3 = eT
(

e2T /3
(
eT /3 − 1

)
eT /3

(
eT /3 − 1

)
eT /3

(
eT /3 − 1

)2 + eT /3

)
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whose dominant eigenvalue is

√(
2e

5T
3 − e

4T
3 + eT

)2 − 4e3T

2
+ e

5T
3 − e

4T
3

2
+ eT

2
= 2e5T /3 + O(e−T /3).

It follows that

lim
ω→0

�p(ω) = 5

3
< 2 = 1

3

∑

i

λ(Ai ). (13)

3.2 Fast Switching with TwoMatrices

In this section, we investigate the case when switching only between two matrices. In
the periodic case, we show that the first-order term of the expansion is always 0, and
give a second-order expansion.

Proposition 1 In the fast periodic case of Theorem 1, consider the case N = 2. Then,
c f p = 0. Moreover, for any Metzler matrices A1, A2 of size d × d,

�p(ω) = λ( Ā) + c f p,2ω
−2 + o

ω→∞(ω−2) (14)

with

c f p,2 = ȳᵀ
( 1

12
[α2A2 − α1A1, [α2A2, α1A1]]

+1

4
α2
1α

2
2[A2, A1]

(
Ā − λ( Ā)I

)−1 [A2, A1]
)
x̄ .

Proof First, we show that the first-order term is zero. By (9), this term is given by
c f p = 1

2 ȳ
ᵀ[α2A2, α1A1]x̄ . Set λ̄ = λ( Ā). By the definition of x̄ and ȳ, one has

α2A2 x̄ = (λ̄ − α1A1)x̄ and ȳᵀα2A2 = ȳᵀ(λ̄ − α1A1).

Thus,

ȳᵀ[α2A2, α1A1]x̄ = ȳᵀα2A2α1A1 x̄ − ȳᵀα1A1α2A2 x̄

= ȳᵀ(λ̄ − α1A1)α1A1 x̄ − ȳᵀα1A1(λ̄ − α1A1)x̄ = 0,

and c f p = 0. Using the Baker-Campbell-Hausdorff formula (Rossmann 2006), we
have M(T ) = exp(T B(T )), with

B(T ) = Ā + T

2
[α2A2, α1A1] + T 2

12
[α2A2 − α1A1, [α2A2, α1A1]] + o(T 2).
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By Theorem 4.1 in Haviv et al. (1992), we have for a matrix F and T small enough
(recall that λ̄I − Ā admits a group inverse)

λ( Ā + T F) = λ( Ā) + T ȳᵀFx̄ + T 2 ȳᵀF(λ̄I − Ā)−1Fx̄ + o(T 2).

Thus,

�p(T
−1) = λ̄ + T ȳᵀ

(
1

2
[α2A2, α1A1] + T

12
[α2A2 − α1A1, [α2A2, α1A1]]

)

x̄

+T 2 ȳᵀ 1
4
α2
1α

2
2[A2, A1](λ̄I − Ā)−1[A2, A1]x̄ + o(T 2),

which gives the announced result. 	

We now provide a simpler formula for the first order term in (11) in the Markov

switching case. In this case, the transition matrix is of the form

Q =
(
1 − p p
1 − p p

)

, (15)

where p = ξ1,2 ∈ (0, 1).

Proposition 2 In the fast Markov case of Theorem 1, consider case N = 2, with a
transition matrix given by (15). Then, for any Metzler matrices A1, A2 of size d × d,
(11) holds with

c f M = p(1 − p)
[
ȳᵀ(A1 − A2)

2 x̄ − (
ȳᵀ(A1 − A2)x̄

)2
]
. (16)

In particular, if A1 − A2 is a diagonal matrix with entries (γi )1≤i≤d on the diagonal,
then

c f M = (1 − p)p

⎡

⎣
∑

i

γ 2
i x̄i ȳi −

(
∑

i

γi x̄i ȳi

)2
⎤

⎦ ≥ 0,

with strict inequality as soon as the γi are not all the same.

In particular, when switching randomly between two matrices, the first-order term
in the fast regime expansion is, in general, not zero, contrary to the periodic switching
case.

Proof The invariant measure of Q is α = (1 − p, p), and it is easily verified that
(Q − I )−1 = (Q − I ). Hence, (11) reads

c f M = (1 − p)pȳᵀ (A1PA2 + A2PA1 − A1PA1 − A2PA2) x̄,

with P = I − x̄ ȳᵀ. Straightforward computations lead to Eq. (16). Finally, since∑
i x̄i ȳi = 1, the fact that c f M ≥ 0 in the case where A1 − A2 is diagonal follows

from Jensen’s inequality (alternatively from the Cauchy-Schwartz inequality). 	
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4 Applications

4.1 Simple Stage-StructuredModels

To illustrate the use of these approximations, we examine a stage-structured model
with juveniles (x1) and adults (x2). Juveniles mature to adults at a rate 1. We consider
two versions of the model: one with fluctuating birth rates and one with fluctuating
mortality rates. For both versions, there are two environments and the environment
transitions between its states at a rate 1 whenω = 1. Hence, the transition probabilities

of the jump process is Q =
(
0.5 0.5
0.5 0.5

)

.

For the model with fluctuating birth rates, adults die at rate 1, reproduce at rate
a > 0 in environment 1, and reproduce at rate b > 0 in environment 2. Assume that
a > b, that is, the birth rate is higher in the environment 1. Hence,

A1 =
(−1 a

1 −1

)

and A2 =
(−1 b

1 −1

)

. (17)

In the slow switching limit (ω → 0), we get the approximation

�(ω) = λ̄s + csω + o(ω2)

where

λ̄s =
√
a

2
+

√
b

2
− 1 and cs = log

⎛

⎜
⎝

(√
a + √

b
)2

4
√
ab

⎞

⎟
⎠.

The zero-th order term λ̄s corresponds to the average 1
2

∑
i λ(Ai ) and is positive if√

a + √
b > 2. In particular, one needs a > 1 to ensure that individuals have a

chance of replacing themselves in their lifetime. The second-order term equals zero if
a = b and is positive otherwise. Hence, provided there is variation in birth rates, the
population growth rate increases with frequency ω (at low frequencies).

In fast randomly switching environments (ω → ∞),

�M (ω) = λ( Ā) + c f M
1

ω
+ o

(
1

ω2

)

The zero-th order term equals

λ( Ā) =
√
2(a + b)

2
− 1

and is positive only if the average birth rate a+b
2 is greater than one. Moreover, as

we have λ( Ā) > λ̄s , the long-term population growth rate is higher in the fast limit

123



Impacts of Tempo and Mode of Environmental Fluctuations… Page 13 of 34 81

frequency �

gr
ow

th
 ra

te
 �
��
�

−0
.1

5
−0

.0
5

0.
05

0.01 0.1 1 10 100

periodic
Markovian
approximations

A

frequency �

gr
ow

th
 ra

te
 �
��
�

−1
0

−6
−4

−2
0

0.01 0.1 1 10 100

periodic
Markovian
approximations

B

Fig. 1 In A and B, the Lyapunov exponents for the juvenile-adult models (17) and (18), respectively, as
functions of the switching frequency ω. Solid lines correspond to numerically approximated Lyapunov
exponents for periodic (blue) and random (dashed red) switching. The dark grey dashed lines correspond
to the analytical approximations. Parameters: In A, per-capita birth rates are a = 2.5 in environment 1 and
b = 0.01 in environment 2. In B, the per-capita birth rate is a = 100 in both environments, the per-capita
death rates for juveniles and adults are b = 40 and 1, respectively, in environment 1, and the per-capita
death rates are 1 and b = 40, respectively, in environment 2 (Color figure online)

ω → ∞ than in the slow limit ω → 0. The first-order correction term is

c f M = − (a − b)2

8a + 8b
.

This term is negative whenever there is variation in birth rates. In fast switching
periodic environments (ω → ∞),

�p(ω) = λ( Ā) + c f p,2
1

ω2 + o

(
1

ω3

)

where the second-order term equals

c f p,2 = −7
√
2 (a − b)2

384
√
a + b

.

This term is also negative whenever there is variation in birth rates.
Together, these approximations suggest that (i) the long-term population growth

rate �(ω) increases with frequency ω and (ii) the long-term population growth rate is
higher in the periodic environment than in the random environment. To explore what
happens at intermediate frequencies, we numerically calculated �p(ω) for a = 2.5
(good times) and b = 0.01 (bad times) (Fig. 1A). For these birth rates, �(0) < 0 and
limω→∞ �(ω) > 0. As predicted by the approximations, the long-term population
growth rate is increasing with ω and is always lower for the random environment.
Interestingly, at intermediate frequencies (around ω ≈ 0.5), the long-term population
growth rate is positive for a periodic environment but negative for the random envi-
ronment. Hence, at these intermediate frequencies, populations persist in periodically
switching environments, but not randomly switching environments.
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For the model with fluctuating death rates, adults have a per-capita birth rate of a. In
environment 1, adults have a per-capita death rate of b and juveniles have a per-capita
death rate of 1. In environment 2, juveniles have a per-capita death rate b, while adults
have a per-capita death rate 1. Hence,

A1 =
(−1 a

1 −b

)

and A2 =
(−b a

1 −1

)

(18)

We assume b > 1 i.e. environment 1 is worse for adults, while environment 2 is worse
for juveniles.

In the slow switching limit (ω → 0), we get the approximation

�(ω) = λ̄s + csω + o(ω2)

where

λ̄s = −b

2
+

√
4a + b2 − 2b + 1

2
− 1

2
and cs = log

(
4a

4a + (b − 1)2

)

.

The zero-th order term λ̄s corresponds to the average 1
2

∑
i λ(Ai ) and is positive if

the birth rate a is greater than the maximal per-capita death rate b > 1. Under our
assumption b > 1, the first-order term is negative. Hence, at lower frequencies, the
population growth rate decreases with frequency.

Alternatively, in fast randomly switching environments (ω → ∞),

�M (ω) = λ( Ā) + c f M
1

ω
+ o

(
1

ω2

)

The zero-th order term

λ( Ā) = √
a − b

2
− 1

2

is positive only if the square root of the average birth rate
√
a is greater than the average

death rate b+1
2 . Moreover, since we have λ( Ā)<λ̄s , the long-term population growth

rate is lower in the fast limit ω → ∞ than in the slow limit ω → 0. The first-order
correction term for the fast, randomly switching environment

c f M = (b − 1)2

4

is always positive. In fast, periodically switching environments (ω → ∞),

�p(ω) = λ( Ā) + c f p,2
1

ω2 + o

(
1

ω3

)

(19)
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where the second-order term

c f p,2 = 7
√
a (b − 1)2

96

is also positive.
Together, these approximations suggest that (i) the long-termpopulation growth rate

�(ω) decreaseswith frequencyω and (ii) the long-termpopulation growth rate is lower
in the periodic environment than in the random environment. To explore what happens
at intermediate frequencies, we numerically calculated�p(ω) for a = 100 and b = 40
(Fig. 1B). For these birth-and-death rates, �(0) > 0 and limω→∞ �(ω) < 0. As
predicted by the approximations, the long-term population growth rate is decreasing
with ω and is always higher for the random environment. Hence, at intermediate
frequencies (around ω ≈ 2), the long-term population growth rate is positive for a
random environment but negative for the periodic environment.

4.2 MetapopulationModels

To model the effects of spatial heterogeneity and environmental fluctuations on pop-
ulation growth, we consider a metapopulation occupying d distinct patches, i.e. a
population of d populations coupled by dispersal (Hanski 1999). The population den-
sity in patch i is xi with a per-capita growth rate of r iσ(ωt) at time t . Individuals from
patch j disperse to patch i at rate li, j . The population dynamics in patch i are

x ′
i (t) = r iσ(ωt)xi +

∑

j �=i

li, j (x j − xi ). (20)

In matrix form, the metapopulation dynamics are

x ′(t) = (
Rσ(ωt) + L

)

︸ ︷︷ ︸
=:Aσ(ωt)

x(t). (21)

where Rσ is a diagonal matrix with entries r1σ , . . . , rdσ and L is the dispersal matrix
with entries li, j .

For a symmetric dispersalmatrix and continuous (rather thanpiecewise continuous),
periodic r i : R → R, Katriel (2022) proved the following result about monotonicity
of �p(ω) using results of Liu et al. (2022).

Theorem 2 (Katriel 2022) Assume L is irreducible and symmetric, r i : R → R are
continuous, period 1 functions that are not all equal. Then the dominant Floquet
multiplier �p(ω) of

x ′
i (t) = r i (ωt) +

∑

j �=i

li, j (x j − xi ).

is a strictly decreasing function of ω.
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Fig. 2 The Lyapunov exponents and density-dependent dynamics for a two patch metapopulation
model (21). In A, the Lyapunov exponent as a function of the switching frequency ω. Solid lines cor-
respond to numerically approximated Lyapunov exponents for periodic (blue) and random (dashed red)
switching. The dark gray, dashed lines correspond to the analytical approximations. Random (in C) and
periodic (in C) simulations at frequency ω = 0.1 for a nonlinear model whose linearization at the origin is

given by (21). Parameters: L =
(−0.1 0.1

0.1 −0.1

)

, R1 =
(
0.5 0
0 −1.5

)

, and R2 =
(−1.5 0

0 0.5

)

. For B and C,

the dynamics are x ′(t) = Aσ(ωt)x(t) − 0.01x(t) ◦ x(t) (Color figure online)

Theorem 2 suggests that slower switching promotes metapopulation persistence,
that is, a higher growth rate �p(ω). In particular, if

∑N
i=1 αiλ(Ai ) > 0 >

λ(
∑N

i=1 αi Ai ), then there is a critical frequency ω∗ such that the metapopulation
persists if and only if the frequency ω of environmental switching lies below ω∗ (see
the blue curve in Fig. 2)

The following theorem shows that the behavior of �(ω) for small and large fre-
quencies is consistent with what we would expect if Theorem 2 were to extend to
random and periodic, piecewise continuous switching, and partially to asymmetric
dispersal matrices L .

Theorem 3 Assume L is irreducible and Ri in (21) are not equal.

1. (Fast switching) c f M > c f p = 0.
2. (Slow switching) If L is symmetric or d = 2, then csp ≤ 0 and csM ≤ 0. Moreover,

equality holds if and only if the right eigenvectors xi of Ai = Ri + L are all equal.

In the case of random switching, Theorem 3 suggests that sufficiently fast switch-
ing always reduces population growth rates. This occurs for all forms of dispersal,
symmetric or asymmetric. If dispersal is symmetric or there are only two patches,
Theorem 3 suggests that ω �→ �M (ω) decreases for sufficiently slow frequencies.
Hence, we make the following conjecture for the random case:

Conjecture 1 Assume L is irreducible and the eigenvectors xi of Ai = Ri + L in (21)
are not equal. If L is symmetric or d = 2, then ω �→ �M (ω) is strictly decreasing.
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Fig. 3 The plain arrows represent the population migration, the dotted arrows the random transitions of the
signal, i.e. of the state where there is a non-zero growth rate. Left: 	 = Lᵀ, the signal moves in the same
direction as the population. Right: 	 = L , the signal moves in the reverse direction (color figure)

Figure 2 illustrates Theorems 2 and 3 and Conjecture 1 numerically for a two-patch,
two environment model (d = N = 2). For both random and periodic switching, the
population growth rate �(ω) decreases with the switching frequency. Hence, the crit-
ical frequency ω∗ below which the metapopulation persists is higher for the randomly
switching environment than for the periodically switching environment.

What happens when there are d ≥ 3 patches and the dispersal matrix L is asym-
metric? It turns out that csM and csp can be positive and, consequently, ω → �(ω)

need not be monotonic. To illustrate this possibility, consider patches lying along a
circle and individuals moving clockwise along this circle. Specifically, let L be the
cyclic permutation matrix:

L =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 0 . . . 0 1
1 −1 . . . 0 0

0 1
. . . 0 0

...
. . .

. . .
...

...

0 0 . . . 1 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Namely Li,i = 1, L1,d = 1, Li+1,i = 1 for 1 ≤ i ≤ d − 1, and Li, j = 0 otherwise.
We assume that there are N = d environmental states and that the growth per-capita
of patch i in environmental state i equals ρ + β ∈ R and otherwise is ρ ∈ R. That is,
r ii = β + ρ and r j

i = ρ for i �= j . Finally, we consider the Markovian signal σ with
the transition matrix 	 being L or Lᵀ. When 	 = Lᵀ, the signal moves in the same
direction as the population (we call this the synchronized case), when 	 = L it goes
backward (we call this the asynchronized case), see Fig. 3. As discussed at the end
of Sect. 3.1, the first-order term expansion of �p(ω) when σ deterministically goes
from i to i + 1 (synchronized case) or from i to i − 1 (asynchronized) is given by
csp = dcsM .
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Fig. 4 The Lyapunov exponent �p(ω) from the circular metapopulation model with d = 3 patches. In
panel A, the asynchronous case where 	 = L . In panel B, the synchronous case where 	 = Lᵀ. The
per-capita growth r ji in patch i equals −0.7 in environment j = i and 0.3 otherwise (Color figure online)

Proposition 3 Let η be the unique positive solution of (η − β)ηd−1 = 1.

1. (synchronized case) If 	 = Lᵀ, then

csM = csyncsM := ln

(
(d − 2)(η − β) + 2η

(d − 1)(η − β)η + η2

)

.

In the case d = 3, the sign of csM is the opposite of the sign of β. For d > 3, its sign
is the sign of βd − β where βd = η∗ − η1−d∗ > 0 with η∗ > 2(d − 1)/(d + 1) > 1
the unique root of Xd+1 − 2Xd + (d − 1)X − d + 2 over (1,∞).

2. (asynchronized case) If 	 = L, then

csM = casyncsM := ln

(
dη

d − 1 + ηd

)

,

which is negative for all β �= 0, d � 3.

For the periodic case where σ deterministically goes from i to i + 1 (synchronized
case) or from i to i − 1 (asynchronized case), the first order term expansion of �p(ω)

is given by csp = dcsM .

The proof of Proposition 3 is in Sect. 8. Figure4 illustrates the main conclusions of
this proposition with d = 3 patches, β = −1, and ρ = 0.3.

5 Discussion

Populations experience environmental fluctuations on multiple time scales, from diur-
nal cycles to multidecadal climate cycles (Hasegawa et al. 2022; Gorenstein et al.
2023).Here,we derived analytical approximations for how the frequency of these envi-
ronmental fluctuations influences the long-term growth rate of structured populations.
In the limit of low-frequency fluctuations, we derived new analytic approximations of
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the form�(ω) = ∑
i αiλ(Ai )+cω+o(ω)with explicit formulas for c in periodic and

random cases. In this low-frequency limit, we show that the mode of fluctuations, ran-
dom versus periodic, has no effect on the population growth rate, that is, the correction
terms cp and cM are equivalent when the random and periodic signal are compara-
ble. This differs sharply from the high-frequency limit. In the limit of high-frequency
fluctuations, we derived an analytical approximation for periodic environments that
complements the work of Monmarché and Strickler (2023) for random environments.
For both approximations, the population growth rate in the infinitely fast switching
limit are equal (i.e. limω→∞ �p(ω) = limω→∞ �M (ω) = λ(

∑
i αi Ai )), but the first-

order correction terms with respect to the period 1/ω of fluctuations, in general, differ
(i.e. c f p �= c f M ). Indeed, for switching between two environments, the first-order
correction term is zero for the periodic case, but (in general) non-zero for the random
case. This difference implies that whether populations persist or not may depend on
the mode of environmental switching.

5.1 Biological Interpretations of the Slow and Fast Limits

The slow limit approximation has a clear biological interpretation in terms of stable-
state distributions xi and vectors of reproductive values yi – two fundamental quantities
of population modeling (Caswell 2001). When environmental changes are rare, the
distribution of the population approaches the stable state distribution of the current
environment, say xi in environment i . The reproductive values for this environment,
the components of yi , correspond to the contributions of an individual in each state
to the long-term population (Caswell 2001). This interpretation of the absolute, rather
than relative, contributions to the growth rate relies on the vector of reproductive values
being normalized, so that the expected value of the reproductive value of a randomly
chosen individual from the stable state distribution is one i.e. yTi xi = 1 (Caswell 2001).
When the environment shifts to a new environment, say j , the expected reproductive
value of a randomly chosen individual shifts to yTj xi i.e. the expected reproductive
value in the new environment of a randomly chosen individual from the old environ-
ment. When this new expectation is greater than one, individuals, on average, have
greater reproductive value immediately after the environmental change. This increase
in reproductive value increases the population growth rate by log(yTj xi ). If environ-
mental changes, on average, boost reproductive values, then the long-term population
growth rate �(ω) increases with frequency ω– at least for ω sufficiently low. This
phenomenon is illustrated with our model (17) of a population of juveniles and adults
where birth rates fluctuate between low and high values. In low birth rate environ-
ments, the stable state distribution mostly consists of adults and adults have slightly
higher reproductive values. In high birth rate environments, there are mostly juveniles
in the stable state distribution but adults have much high reproductive value. Hence,
rare shifts from low birth rate to high birth rate environments substantially increase
the average reproductive value of an individual. In contrast, rare shifts from high birth
rate to low birth rate environments slightly decrease the average reproductive value
of an individual. Hence, the net effect of environmental changes is positive and the
long-term population growth rate �(ω) increases with frequency. In contrast, when
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the juvenile and adult death rates fluctuate, that is, Eq. (18), we get the opposite trend.
In an environment with higher adult mortality, there are more juveniles at stable state
distribution and juveniles have higher reproductive value. In an environment with
higher juvenile adult mortality, adults are more common at the stable state distribution
and adults have higher reproductive value. Hence, switching between environments
always results in a decrease in the average reproductive value of an individual and
a corresponding decrease in the population growth rate. Similar reasoning applies
to the two patch metapopulation model in Fig. 2: switching always results in more
individuals in the lower quality patch and a reduction in the population growth rate.

The interpretation of the fast limit approximations is less clear in general. However,
we can draw some conclusions in the case of random switching between two envi-
ronments. When only the contribution of one population state to another population
state fluctuates (i.e. a non-diagonal entry of A), Proposition 2 implies that higher fre-
quency fluctuations always increase the long-term population growth rate. In contrast,
when only the contribution of population states to themselves rapidly fluctuates (i.e.
only diagonal terms fluctuate), higher frequencies decrease the long-term population
growth rate. In particular, this conclusion applies to metapopulations with constant
dispersal rates whose per-capita growth rates fluctuate between two values.

5.2 Implications for Metapopulations

For metapopulations with symmetric dispersal matrices, Katriel (2022) showed that
the long-term population growth rate �p(ω) always decreases with frequency when
the per-capita growth rates exhibit periodic, continuous fluctuations. Hence, metapop-
ulations exhibiting diffusive-like movement grow faster in low frequency, periodic
environments. Here, we show that the same conclusion holds for randomly fluctuating
environments in the limits of fast and slow switching (see Theorem 3). Moreover, in
the fast switching limit, long-term population growth rates are higher in randomly
switching environments than in periodically switching environments. An open prob-
lem (see Conjecture 1) is whether these conclusions hold at intermediate frequencies
of random switching. However, when metapopulations exhibit asymmetric dispersal,
we show that the long-term population growth rate may not vary monotonically with
the environmental frequency ω. For example, we constructed an example (see Fig. 4)
in which�(ω) is maximized at intermediate environmental frequencies. A likely hard
open problem is characterizing which asymmetric dispersal matrices result in similar
behaviors.

5.3 Relationship to Stochastic Demography

The effect of temporal variation in environmental conditions on the growth rate of the
structuredpopulation is amain focus of thefieldof stochastic demography (Tuljapurkar
1990; Caswell 2001; Boyce et al. 2006; Hastings and Gross 2012). However, this
extensive body of work focuses exclusively on discrete-time models. Hence, to make
comparisons to this literature requires defining an appropriate metric of variation of
instantaneous demographic rates, say an entry a(ωt) of the matrix Aσ(ωt). One natural
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Fig. 5 Demographic variances (22) and (23) for the stage structured models (17)–(18) with fluctuating birth
rates (A) and death rates (B). Parameters are as in Fig. 1 (color figure)

option is to consider the variation in the average demographic rate at stationarity over
a fixed time interval, say of length one. In a random environment with stationary
distribution π , this metric of variation equals

VarM (ω) = Eπ

[(∫ 1

0
a(ωt)dt

)2
]

− Eπ

[∫ 1

0
a(ωt)dt

]2

= Eπ

[(
1

ω

∫ ω

0
a(t)dt

)2
]

− Eπ

[
1

ω

∫ ω

0
a(t)dt

]2
(22)

whereEπ corresponds to the expectationwithP[σ(0) = i] = πi . VarM (ω) is a smooth
function of ω and converges to zero as ω → 0 (see, e.g., Monmarché and Strickler
2023). Similarly, one can define variation of a in the periodic environment as

Varp(ω) =
∫ 1

0

[(
1

ω

∫ ω

0
a(s + t)dt

)2
]

ds −
[∫ 1

0

1

ω

∫ ω

0
a(t + s)dtds

]2

(23)

where a(t) is started randomly in the interval [0, 1]. Varp(ω) also converges to zero
as ω → ∞. However, unlike the random case, this convergence is not monotone, as
Varp(ω) equals zero at integer values. However, as illustrated in Fig. 5, the average
birth-and-death rates for the juvenile-adult models tend to decrease with frequency
for the periodic case and continuously decrease for random fluctuations. These trends
facilitate comparisons with the stochastic demography literature.

A central dogma of stochastic demography is (Hastings and Gross 2012, page
96) “temporal variation in vital rates will typically lead to a reduction in pop-
ulation growth rate.” This genesis of this dogma were discrete-time geometric
random walks and the observation that the geometric mean is less than the arith-
metic mean (Lewontin and Cohen 1969). For random discrete-time matrix models
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x(t + 1) = A(t + 1)x(t), Tuljapurkar (1990) extended this dogma provided that
non-negative matrices A(1), A(2), . . . are serially uncorrelated: the dominant Lya-
punov exponent of this random product decreases with variation in the matrix entries.
However, the continuous-time models considered here are inherently temporally auto-
correlated over sufficiently short time scales. Consistent with our results, the central
dogma of stochastic demography does not apply, in general, to discrete-time models
with temporal autocorrelations: temporally autocorrelated fluctuations can increase
population growth (Tuljapurkar 1990). This “inflationary effect” of autocorrelated
fluctuations has been observed in stage-structured (Tuljapurkar and Haridas 2006) and
spatially structured models (Roy et al. 2005; Tuljapurkar and Haridas 2006; Schreiber
2010; Kortessis et al. 2023a; Schreiber 2023). Consistent with these earlier studies, we
found fluctuations in mortality for stage-structured models and per-capita growth rates
in spatially structured models can generate this inflationary effect: lower frequencies
of fluctuations generate greater variation in demographic rates averaged over a time
step and higher population growth rates. Notably, our approximations suggest that this
inflationary effect in spatially-structured population models occurs whenever there is
symmetric dispersal.

5.4 Concluding Remarks

Our approach of modeling environmental fluctuations as a piecewise constant contin-
uous process offers an analytically more tractable method for assessing the impact of
environmental variability on the long-term growth rates of structured populations. The
analytical approximations we have developed for growth rates in the limits of slow and
fast environmental switching may serve as valuable new tools for theoretical biolo-
gists and appliedmathematicians. These tools enable a deeper examination of howboth
the tempo (slow versus fast) and the mode (periodic versus random) of environmen-
tal fluctuations influence critical population dynamics, including growth, persistence,
and risk of extinction. This refined approach not only enhances our understanding
of population responses to environmental variability but also opens new avenues for
research in population biology and applied mathematics with potential applications to
epidemiology, ecology, population genetics, and conservation biology.

6 Proof of Theorem 1

6.1 Slow Periodic Switching

We prove formula (8). Recall that T = ω−1. We write ri = μ(Ai ). By Perron-
Frobenius Theorem, for all i , for all T > 0,

e−riαi T eαi T Ai = pi + o(e−γ T ),
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where γ > 0 and pi = xi y
ᵀ
i is the projection matrix on xi in the direction of yi . Thus,

N∏

i=1

e−riαi T eTαi Ai =
N∏

i=1

pi + o(e−γ T ),

which leads to

λ(M(T )) =
N∏

i=1

eriαi T λ

(
N∏

i=1

pi + o(e−γ T ).

)

Now, λ
(∏N

i=1 pi + o(e−γ T )
)

= λ
(∏N

i=1 pi
)

+ o( 1
T ) and

N∏

i=1

pi = xN y
ᵀ
N . . . x1y

ᵀ
1 =

(
N−1∏

i=1

xᵀ
i yi+1

)

xN y
ᵀ
1 .

In particular, λ(
∏N

i=1 pi ) = ∏N−1
i=1 xᵀ

i yi+1λ(xN y
ᵀ
1 ), where xN y

ᵀ
1 is the projection

matrix on xN in the direction of yᵀ
1 . Hence, λ(xN y

ᵀ
1 ) = xᵀ

N y1. This concludes the
proof by Lemma 1.

6.2 Fast Periodic Switching

This section is devoted to the proof of Formula (9). On the one hand, for an irreducible
Metzler matrix B, we have

λ(eB) = eλ(B).

Indeed, since B is Metzler and irreducible, eB is a nonnegative irreducible matrix,
hence λ(eB) = r(eB). Now it is easily seen that r(eB) = eλ(B) because the spectrum
of eB is the exponential of the spectrum of B. On the other hand, by an iteration of
the Baker-Campbell-Hausdorff formula (Rossmann 2006), one has

M(T ) = exp

⎛

⎝T Ā + T 2

2

∑

1≤i< j≤N

[α j A j , αi Ai ] + o(T 2)

⎞

⎠

Thus,

1

T
log λ(M(T )) = λ(B(T )), (24)

where B(T ) = Ā + T
2

∑
1≤i< j≤N α jαi [A j , Ai ] + o(T ). Now, since Ā has a

unique dominant eigenvalue, the same holds for B(T ), for T small enough. More-
over, one has B ′(0) = 1

2

∑
1≤i< j≤N α jαi [A j , Ai ]. Thus, by (Horn and Johnson
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2013, Theorem 6.3.12) or (Haviv et al. 1992, Theorem 4.1), the function T �→
λ(B(T )) is differentiable at 0 and its derivative at 0 is given by ȳᵀB ′(0)x̄ =
ȳᵀ
(
1
2

∑
1≤i< j≤N α jαi [A j , Ai ]

)
x̄ . This, together with Lemma 1 and Eq. (24), proves

(9).

6.3 SlowMarkovian Switching

In this section, devoted to the proof of (10), σ is a Markov chain as in Sect. 2.2. We
use the notations of Sect. 2.2. In view of (7), the goal is now to give an expansion of
μω when ω vanishes.

In the following, for i ∈ �1, N�, we denote by (ϕi
t )t�0 the flow on � associated

to Fi ; namely, for z ∈ �, θi (t):=ϕi
t (z) solves θ ′

i (t) = Fi (θi (t)) for all t � 0 with
θi (0) = z. Recall that xi stands for a unit right eigenvector of Ai . The following
follows e.g. from (Benaïm and Strickler 2019, Lemma 6).

Lemma 3 Assuming that A1, . . . , AN areMetzler and irreducible, there existC, a > 0
such that for all z ∈ �, i ∈ �1, N� and t � 0,

|ϕi
t (z) − xi | � Ce−at . (25)

In the slow switching regime, since the signal σ(ωt) stays constant for very long
times, Lemma 3 shows that the process θ in (5) spends most of its time close to the
points (xi )i∈�1,N�, and μω is then expected to be close to

μ̃0 =
N∑

i=1

αiδxi ,i .

The next statement provides the first order expansion of this convergence. Notice that
its proof doesn’t rely on the specific form of the vector fields (6), but only on the
contraction established in Lemma 3 (so that the next result can be straighforwardly
extended to slow swithching between any contracting flows—i.e. assuming (25)—over
a compact manifold)

Proposition 4 Assuming that A1, . . . , AN are Metzler and irreducible, for all f ∈
C1(� × �1, N�),

μω f = μ̃0 f + ωc̃1 + o
ω→0

(ω)

with

c̃1 =
N∑

i, j=1

αi qi j

∫ ∞

0

(
f
(
ϕ
j
s (xi ), j

)
− f (x j , j)

)
ds.
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Proof Fix f ∈ C1(� × �1, N�). Denote by (Tk)k∈N the jump times of the Markov
chain (σ (ωt))t�0 and by νω the invariant measure of the discrete-time chain
(θ(Tk), σ (ωTk))k∈N, called the skeleton chain associated to (θ(t), σ (ωt))t�0. Recall
the following relation between νω and μω (see (Davis 1993, Theorem 34.31 p.123)):

μω f =
∫

�×�1,N�

∫ ∞

0
f
(
ϕi
s(z), i

)
ωe−ωsdsνω(dzdi). (26)

Thanks to Lemma 3, for any (z, i) ∈ � × �1, N� we can write

∫ ∞

0
f
(
ϕi
s(z), i

)
ωe−ωsds

= f (xi , i) + ω

∫ ∞

0

(
f
(
ϕi
s(z), i

)
− f (xi , i)

)
e−ωsds

= f (xi , i) + ω

∫ ∞

0

(
f
(
ϕi
s(z), i

)
− f (xi , i)

)
ds + o

ω→0
(ω) , (27)

by dominated convergence. On the other hand, since νω is invariant for the Markov
kernel T given by

T f (z, i) =
N∑

j=1

qi j

∫ ∞

0
f
(
ϕi
s(z), j

)
ωe−ωsds,

using that νω = νωT , that the marginal on �1, N� of νω is α and that, thanks to
Lemma 3,

∣
∣
∣
∣
∣
∣
T f (x, i) −

N∑

j=1

qi j f (xi , j)

∣
∣
∣
∣
∣
∣
� C‖∇x f ‖∞ω

for some C > 0 independent from ω, we immediately get

νω f −→
ω→0

N∑

i, j=1

αi qi j f (xi , j).

Using this after (27) (and, again, that the marginal of νω on �1, N� is α) in (26) we
end up with

μω f = μ̃0 f + ω

∫

�×�1,N�

∫ ∞

0

(
f
(
ϕ
j
s (z), i

)
− f (x j , j)

)
dsνω(dzdi) + o

ω→0
(ω)

= μ̃0 f + ω

N∑

i, j=1

αi qi j

∫ ∞

0

(
f
(
ϕ
j
s (xi ), j

)
− f (x j , j)

)
ds + o

ω→0
(ω).
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This concludes the proof. 	

In view of (7) and Proposition 4, the proof of the expansion (10) in the slow

Markovian switching case is concluded by the following.

Lemma 4 In Proposition 4, for f (z, i) = 1 · Ai z, we have

c̃1 =
N∑

i, j=1

αi qi j ln(y
ᵀ
j xi ).

Proof Notice that, for all z ∈ �d ,

f
(
ϕ
j
s (z), j

)
= 1

ᵀ
d A j esA j z

1
ᵀ
d e

sA j z
= d

ds
ln(1ᵀ

d e
sA j z).

Theorefore, using that x j = ϕ
j
s (x j ), one has

∫ ∞

0

(
f
(
ϕ
j
s (xi ), j

)
− f (x j , j)

)
ds =

∫ ∞

0

d

ds

(

ln

(
1

ᵀ
d e

sA j xi

1
ᵀ
d e

sA j x j

))

ds

= lim
s→∞ ln

(
1

ᵀ
d e

sA j xi

1
ᵀ
d e

sA j x j

)

= ln(yᵀ
j xi ),

where we have used (once again) Perron-Frobenius Theorem. 	


7 Proof of Theorem 3

We first prove a more general result about random switching of Metzler matrices that
are symmetric. This result applies to the special case of (21) when the dispersal matrix
L is symmetric.

Proposition 5 In the settings of Theorem 1, assume that all the matrices A1, . . . , AN

are symmetric. Then, in (8) and (10), csp � 0 and csM � 0. Moreover, either all the
xi are equal, in which case ω �→ �p(ω) and ω �→ �M (ω) are constant, or otherwise
csp < 0 and csM < 0.

Proof We only give the proof for the Markov case, since in the slow switching regime,
csp is positively proportional to csM for a particular Markov chain, as described at
the end of Sect. 3.1. Since Ai is symmetric, its left eigenvector yi is proportional the
right eigenvector xi . Moreover, due to the normalization condition yᵀ

i xi = 1, we have
yi = ‖xi‖−2xi . Therefore,
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∏

i, j

(
yᵀ
j xi

)qi, jαi =
∏

i, j

(
‖x j‖−2xᵀ

j xi
)qi, jαi

≤
∏

i, j

( ‖xi‖
‖x j‖

)qi, jαi
,

where the last line follows fromCauchy–Schwarz inequality. Now, in this last product,
the exponent of each ‖xi‖ is∑ j αi qi, j −∑

j α j q j,i , which is zero since α is invariant
for Q. This entails that csM ≤ 0. Moreover, csM = 0 if and only if there is equality
in all the Cauchy–Schwarz inequalities we used, namely, if and only if all the xi are
positively correlated, and thus, equal. In that case, one easily checks that μω, the
invariant probability measure of the PDMP on the sphere considered in Sect. 6.3 for
the proof of (10), is δx1 ⊗ α for all values of ω. In view of (7), ω �→ �M (ω) is thus
constant. In the periodic case, �p(ω) can also be written as the integral of a function
of the unique globally asymptotically periodic solution of the system on the sphere
(see Formula 29 in Theorem 8 in Benaim et al. (2024)). Here again, it is easy to check
that the constant solution equal to x1 is the unique periodic solution, and thus �p(ω)

is constant. 	

The next two propositions provide show that c f M > c f p = 0 in the fast-switching

limit.

Proposition 6 In the case (21), c f p = 0.

Proof Recall that

c f p = 1

2

∑

i< j

αiα j ȳ
ᵀ[A j , Ai ]x̄ .

Since Ai = Ri + L and Ri and R j commute, we end up with [A j , Ai ] = [L, Ri ] +
[R j , L]. Now,

ȳᵀ[L, Ri ]x̄ = ȳᵀLRi x̄ − ȳᵀRi Lx̄

= ȳᵀ(λ( Ā) − R̄)Ri x̄ − ȳᵀRi (λ( Ā) − R̄)x̄

= 0,

where we have used that R̄ and Ri commute and that by definition,

ȳᵀ(R̄ + L) = λ( Ā)ȳᵀ, (R̄ + L)x̄ = λ( Ā)x̄ .

	

Proposition 7 In the case (21), c f M > 0.
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Proof First, let us prove that, in the case (21),

c f M =
∑

i, j

αi (Q − I )−1
i, j

(
ȳᵀR j x̄ ȳ

ᵀRi x̄ − ȳᵀR j Ri x̄
)
. (28)

Indeed,

ȳᵀA j x̄ ȳ
ᵀAi x̄ − ȳᵀA j Ai x̄ = ȳᵀR j x̄ ȳ

ᵀRi x̄ − ȳᵀR j Ri x̄ + Bi + C j + D,

where

Bi = ȳᵀLx̄ ȳᵀRi x̄ − ȳᵀLRi x̄

C j = ȳᵀR j x̄ ȳ
ᵀLx̄ − ȳᵀR j Lx̄

D = ȳᵀLx̄ ȳᵀLx̄ − ȳᵀL2 x̄ .

Using that
∑

i αi (Q − I )−1
i j = 0 = ∑

j (Q − I )−1
i, j , we end up with

∑
i, j αi (Q −

I )−1
i, j (Bi + C j + L) = 0, leading to (28).

For k ∈ �1, N�, write ak = x̄k ȳk and (Ri )k,k = r i,k . Since the Ri ’s are diagonal,
we get that ȳᵀRi x̄ = ∑

k akr
i,k . Now, let X = (X1, . . . , XN ) be a random variable

taking the value (r1,k, . . . r N ,k) with probability ak for all k ∈ �1, N� and define
ϕ : RN → R by

ϕ : (x1, . . . , xN ) �→ −
∑

i, j

αi (Q − I )−1
i, j xi x j .

It is readily checked that

∑

i, j

αi (Q − I )−1
i, j

(
ȳᵀR j x̄ ȳ

ᵀRi x̄ − ȳᵀR j Ri x̄
) = E(ϕ(X)) − ϕ(E(X)).

It remains to prove that ϕ is convex, which will imply by Jensen inequality that
c f M > 0. Since ϕ is a quadratic form, it is convex if and only if it is positive. Yet,
ϕ(x) = − ∫

f (i)(Q − I )−1 f (i)α(di), where f (i) = xi , which can be interpreted as
an asymptotic variance, and is thus positive (see the discussion after Proposition 4 in
Monmarché and Strickler (2023)). 	


Finally, we consider the case of d = 2 patches. The matrices Ai in case (21) can
be written as

Ai =
(
ai α

β bi

)

, i = 1, . . . , N .
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for some ai , bi ∈ R and α, β > 0 (recall that the matrices areMetzler and irreducible).
The right and left eigenvectors can be computed explicitely as follows

xi = 1

2α + gi
[2α, gi ]ᵀ, yi = 2α + gi

4αβ + g2i
[2β, gi ]ᵀ, (29)

with

gi =
√

(bi − ai )2 + 4αβ + bi − ai > 0.

Note that for i �= j , gi = g j if and only if xi = x j , if and only if Ai = A j + δi I for
some δi ∈ R.

Proposition 8 In case (21), when d = 2,

csM =
∑

i, j

αi qi j ln

(
4αβ + gi g j

4αβ + g2j

)

≤ 0.

Moreover, either for all j > 1, there is δ j such that A j = A1 + δ j I and ω �→ �M (ω)

is constant and in particular, csM = 0; or otherwise csM < 0.

Proof By Eqs. (10) and (29), we get that

csM =
∑

i, j

αi qi j ln

(
4αβ + gi g j

4αβ + g2j

2α + g j

2α + gi

)

.

Note that by invariance of α with respect to Q, we have for all (ηi )1≤i≤N

∑

i, j

αi qi, jηi =
∑

i, j

αi qi, jη j =
∑

i

αiηi (30)

This yields

csM =
∑

i, j

αi qi j ln

(
4αβ + gi g j

4αβ + g2j

)

.

Now, applying for all i and j Cauchy–Schwarz inequality to the two-dimensional
vectors (

√
4αβ, gi ) and (

√
4αβ, g j ), we have

(
4αβ + gi g j

) ≤
(
4αβ + g2i

)1/2 (
4αβ + g2j

)1/2
,

with equality if and only if gi = g j . Therefore,

∑

i, j

αi qi j ln
(
4αβ + gi g j

) ≤
∑

i, j

αi qi j ln

((
4αβ + g2i

)1/2 (
4αβ + g2j

)1/2
)
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= 1

2

∑

i, j

αi qi j ln
(
4αβ + g2i

)
+ 1

2

∑

i, j

αi qi j ln
(
4αβ + g2j

)

=
∑

i, j

αi qi j ln
(
4αβ + g2i

)
,

where the last equality comes from (30), and the first inequality is an equality if and
only if gi = g j for all i and j . Hence, we get that csM ≤ 0, and csM < 0 except if
all the gi are equal, that is, if and only if all the xi are equal. But, as explained in the
proof of Proposition 5, this implies that the map ω �→ �M (ω) is constant. 	


8 Proof of Proposition 3

Because of the symmetries of the problem, the principal right eigenvector xi of Ai =
L + Ri is simply x1 up to a circular relabelling of the states, i.e. xi,k = x1,k−i+1 for all
k ∈ �1, d� (recall that indexes are understood modulo d). Similarly, denoting by ŷi the
principal left eigenvector of Ai normalized so that1ᵀ

d ŷi = 1 (so that yi = (xᵀ
i ŷi )

−1 ŷi ),
which is the right eigenvector of Ri + LT (similar to Ri + L except that migration
turns in the other direction), it is obtained from xi by ŷi,k = xi,2i−k . Then, in (10), in
the synchronized case,

csM = csyncsM := 1

d

d∑

i=1

ln(yᵀ
i+1xi ) = ln(yᵀ

2 x1) = ln(ŷᵀ
2 x1) − ln(ŷᵀ

1 x1),

while, in the a-synchronized case,

csM = casyncsM := 1

d

d∑

i=1

ln(yᵀ
i−1xi ) = ln(ŷᵀ

d x1) − ln(ŷᵀ
1 x1),

Denoting for brevity λ = λ(A1), x1 solves

(β − 1)x1,1 + x1,d = λx1,1, −x1,i + x1,i−1 = λx1,i ∀i ∈ �1, d�,

which, writing r = λ + 1, is solved as

x1,i = (r − β)rd−i x1,1 ∀i ∈ �2, d�

with x1,1 being fixed by the normalization. Moreover, the equation x1,1 = r x1,2 shows
that r is the unique positive solution of

(r − β)rd−1 = 1 (31)
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In particular, r > β and λ = r − 1 is always larger than −1, and has the same sign
as β (since the solution for β = 0 is r = 1, and the solution of this equation is an
increasing function of β).

Using the symmetries previously mentioned,

ŷᵀ
2 x1 = (r − β)2x21,1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

rd−2

rd−1

1
...

rd−4

rd−3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

rd−1

rd−2

rd−3

...

r
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= (r − β)2x21,1

[
(d − 2)rd−3 + 2r2d−3

]

= x21,1

[
(d − 2)(r − β)r−2 + 2r−1

]
,

while

ŷᵀ
1 x1 = (r − β)2x21,1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

rd−1

1
r
...

rd−3

rd−2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

rd−1

rd−2

rd−3

...

r
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= (r − β)2x21,1

[
(d − 1)rd−2 + r2d−2

]

= x21,1

[
(d − 1)(r − β)r−1 + 1

]
,

and

ŷᵀ
d x1 = (r − β)2x21,1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
r
r2

...

rd−2

rd−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

rd−1

rd−2

rd−3

...

r
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= (r − β)2x21,1dr
d−1

= x21,1(r − β)d.

We have thus obtained that

csyncsM = ln

(
ŷᵀ
2 x1
ŷᵀ
1 x1

)

= ln

(
(d − 2)(r − β) + 2r

(d − 1)(r − β)r + r2

)

= ln

(
(d − 2)r1−d + 2r

(d − 1)r2−d + r2

)

= ln

(
(d − 2) + 2rd

(d − 1)r + rd+1

)

.
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This has the same sign as f (r) where

f (s) = (d − 2) + 2sd − (d − 1)s − sd+1.

When d = 3, we see that

f (s) = −s4 + 2s3 − 2s + 1 = (1 − s)3(1 + s),

which for s > 0 has the same sign as 1− s. As we saw, 1− r = −λ has the same sign
as −β, and as a conclusion in the case d = 3, the sign of csM is the opposite of the
sign of β.

Consider the case d > 3 (for d = 2, L is symmetric). Computing

f ′(s) = 2dsd−1 − (d − 1) − (d + 1)sd

f ′′(s) = 2d(d − 1)sd−2 − d(d + 1)sd−1 ,

we see that f (1) = f ′(1) = 0, and f ′′ cancels exactly twice, at 0 and s∗ = 2(d−1)
d+1 ∈

(1, 2), and is positive on (0, s∗) and negative on (s∗,+∞). In particular, f is convex
decreasing positive over (0, 1), increasing convex over (1, s∗) and then it becomes
strictly concave, being eventually decreasing and then going to −∞. In particular, it
admits exactly one root r∗ over (1,∞), with r∗ > s∗, f (s) > 0 if s ∈ (1, r∗) and
f (s) < 0 if s > r∗. Since the solution rβ of (31) is an increasing function of β and
goes to infinity as β goes to infinity, we obtain that, for each d, there is a unique βd > 0
such that rβ = r∗ (which is simply β = r∗ − r1−d∗ ). For β < βd (resp. >), rβ < r∗
(resp. >), hence f (rβ) > 0 (resp. <), so that csM > 0 (resp. < 0).

In the asynchronised case,

casyncsM = ln

(
ŷᵀ
2 x1
ŷᵀ
1 x1

)

= ln

(
(r − β)dr

(d − 1)(r − β) + r

)

= ln

(
dr2−d

(d − 1)r1−d + r

)

= ln

(
dr

d − 1 + rd

)

.

This has the same sign as f (r) with f (s) = −sd + ds − (d − 1). Since f ′(s) =
d(1 − sd−1), f is increasing over [0, 1] and decreasing over [1,+∞), reaching its
global maximum at 1, with f (1) = 0. In particular, for β �= 0, r �= 1 and thus
f (r) < 0 from which casyncsM < 0.
The periodic case follows from the discussion at the end of Sect. 3.1
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