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INTRODUCTION

The richness and composition of co-occurring species 
can exhibit dramatic variation across space and time. 
Understanding the processes generating and maintain-
ing this variation is a central focus of community ecology 
(Chase,  2003; HilleRisLambers et al.,  2012; Mittelbach 
& Schemske, 2015). Dispersal of individuals from a re-
gional species and filtering by the abiotic environmental 
conditions determine which species have the opportu-
nity to co-occur locally (Kraft, Adler, et al.,  2015). As 
populations grow, species interactions and dynamics 
determine which subsets of species coexist and which 
of these subsets resist invasion attempts from the rest of 
the regional species pool (Chase, 2003; HilleRisLambers 
et al., 2012; Law & Morton, 1996). Hence, understand-
ing what factors determine persistent patterns of species 
co-occurrence requires understanding the process of 

community assembly, coexistence mechanisms and the 
determinants of competitive exclusion, or more gener-
ally, invasion resistance.

At an ecological time scale, three outcomes of 
community assembly are possible (Chase, 2003; Law & 
Morton, 1996). First, regardless of the order in which the 
species invade, the community always assembles to the 
same configuration of species—a unique stable state. 
Second, there are alternative stable states and commu-
nity assembles to one of these states, but which one may 
depend on the order in which species arrive at the local 
site. Finally, community assembly may never settle. There 
is a constant cycling in species composition as invasions 
from the species pool repeatedly shift the community 
from one state to another state. Despite theoretical sup-
port for cycling (Allesina & Levine,  2011; Schreiber & 
Rittenhouse, 2004; Yodzis, 1978), it is rarely observed in 
empirical studies (Chase, 2003; Warren et al., 2003).
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Abstract
Modern coexistence theory (MCT) is one of the leading methods to understand 
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occurs, MCT relies on a ‘mutual invasibility’ condition designed for two-species 
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to species-rich communities and for understanding invasion resistance as well as 
coexistence, especially for communities that could not be analysed with MCT so 
far. Using two data-driven community models from the literature, we illustrate the 
utility of our framework and highlight the opportunities for bridging the fields of 
community assembly and species coexistence.
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Many mechanisms have been proposed to explain 
why some collections of species coexist, while oth-
ers do not (Chesson,  2000). These mechanisms include 
competition for limiting resources (Letten et al.,  2017; 
MacArthur,  1970; Tilman et al.,  1982), shared preda-
tors (Holt & Lawton, 1994; Janzen, 1970; Paine, 1966) or 
mutualists (Johnson & Bronstein,  2019), and temporal 
fluctuations in environmental conditions (Chesson, 1994, 
2003). Modern coexistence theory (MCT) attempts to 
unify our understanding of these different concepts by 
disentangling mechanisms into their stabilizing and 
equalizing components (Chesson, 2000).

The key ingredient of MCT is the per-capita growth 
rate of a species (the invader) at low density while 
other species (the resident community) are at equilib-
rium or exhibit long-term stable fluctuations—the in-
vasion growth rate (Chesson,  2000; Grainger, Levine, 
et al., 2019; MacArthur & Levins, 1967; Schreiber, 2000; 
Turelli,  1978). A positive invasion growth rate implies 
that the invader tends to increase when rare, while a neg-
ative invasion growth rate implies that the resident com-
munity resists the invasion attempt. MCT is based on 
the assumption that if the ‘right’ invasion growth rates 
are positive then coexistence occurs. MCT, then, decom-
poses invasion growth rates into different coexistence 
mechanisms to identify their relative importance (Ches-
son, 1994, 2003, 2020; Ellner et al., 2019; Spaak, Godoy, 
et al., 2021).

But what are the ‘right’ invasion growth rates and 
in what sense does their being positive ensure coexis-
tence? The answer is clear for two species of competi-
tive communities. Each species should have a positive 
invasion growth rate when the other species is at equi-
librium, that is, the mutual invasibility criterion. But 
what about more complex communities? The most 
commonly taken approach is to test whether each 
species has a positive invasion growth rate while it is 
absent and the resident community is at equilibrium. 
Defined as such, these invasion growth rates may 
not exist or may not be unique (Barabás et al.,  2018; 
Saavedra et al., 2017; Spaak, Carpentier, et al., 2021). 
Additionally, even when they are defined, positive in-
vasion growth rates might not be sufficient to guaran-
tee coexistence; an important exception, however, are 
competitive communities with diffusive interactions—
comparable interaction strengths for all species pairs 
(Chesson, 2018). This is especially unfortunate, as MCT 
explores more and more species-rich communities 
with asymmetric interactions (Chesson,  2018; Godoy 
et al.,  2018; Petry et al.,  2018; Saavedra et al.,  2017; 
Shoemaker et al., 2020; Spaak, Carpentier, et al., 2021; 
Spaak & De Laender,  2021). Knowledge about these 
two issues are widespread in MCT (Barabás et al., 2018; 
Chesson,  2018, 2020; Pande et al.,  2020; Saavedra 
et al., 2017; Spaak & De Laender, 2020; Spaak, Godoy, 
et al.,  2021), yet the invasion growth rates remain 
widely used as if these problems did not exist (Buche 

et al.,  2022; Ellner et al.,  2019; Grainger, Letten, 
et al.,  2019; Letten et al.,  2018; Schreiber et al.,  2023; 
Shoemaker et al., 2020; Spaak, Adler, et al., 2023).

Invasion growth rates also determine whether a con-
figuration of coexisting species is invasion resistant 
(Benaïm & Schreiber,  2019; Chesson & Ellner,  1989; 
Schreiber, 2000). If the invasion growth rates are negative 
for all missing species, then the local community is inva-
sion resistant and an end state for community assembly. In 
principle, one could use the methods of MCT to partition 
invasion growth rates and identify the mechanisms un-
derlying invasion resistance. For example, to what extent 
is invasion resistance due to an environmental filter or 
having too much niche overlap with the resident species? 
However, we are not aware of any study explicitly per-
forming such an analysis for a species-rich community. 
This is surprising as in several MCT studies, only a subset 
of the species are predicted to coexist by the models, and 
the methods of MCT are only applied to these subsets of 
species (Godoy et al., 2014; Letten et al., 2018; Maynard 
et al., 2019; Spaak, Carpentier, et al., 2021). However, this 
misses the opportunity to understand why the models are 
predicting these subcommunities are invasion resistant.

Here, we build a bridge between community assem-
bly theory and MCT to address these limitations. This 
bridge is based on a recent advance in the mathematical 
theory of permanence (Hofbauer & Schreiber, 2022) that 
capitalizes on earlier, more abstract theory (Hofbauer & 
Schreiber, 2010; Patel & Schreiber, 2018; Roth et al., 2017; 
Schreiber, 2000). In short, this theory associates invasion 
growth rates with all subcommunity dynamics to de-
scribe all possible transitions between communities due 
to single or multiple species transitions—the invasion 
graph. Using these graphs, one can identify, in a mathe-
matically rigorous manner, the end states of community 
assembly, that is, subsets of species that coexist and are 
invasion resistant. For these end states, we propose to 
apply the MCT approach to (i) the invasion growth rates 
of coexisting species to understand why the species co-
exist and (ii) the invasion growth rates of the excluded 
species to understand why the community is invasion re-
sistant. We apply our approach to two datasets from the 
literature that previously could not be analysed by MCT.

Our paper consists of four sections which can be read 
partially independently of each other:

1. Review how invasion growth rates are typically 
used in MCT and its issues.

2. Review a mathematically rigorous treatment of in-
vasion growth rates (i.e. permanence theory) and show 
how this improves the current state.

3. Propose an extension of MCT based on permanence 
theory, which allows the analysis of certain species-rich 
communities currently outside of the grasp of MCT.

4. Apply the newly developed theory to two com-
munities from the literature showcasing how we get 
new insights using these advances. We have one ap-
plication using niche and fitness differences based on 
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Lotka–Volterra dynamics as well as one application to a 
community with a fluctuating environment with storage 
effects and relative non-linearities.

We attempted to write (1) and (2) in a way accessible to 
readers without a strong mathematical background; to 
do so we moved some of the mathematical subtleties and 
precision to Appendix A and referred to Hofbauer and 
Schreiber  (2022) for a more precise treatment. Impor-
tantly, we encourage readers without a deep understand-
ing of (1) and (2) to continue with the extension in (3) and 
applications in (4) that require less mathematical sophis-
tication. Additionally, we provide automated code to 
help with empirical applications of these new concepts.

TH E NA IVE IN VASION CRITERION

To describe the framework, we focus on continuous-
time models of n interacting species with densities 
N =

(

N1,N2, … ,Nn

)

. To allow for population structure 
(e.g. discrete habitat patches, stages and genotypes), 
temporal forcing (e.g. periodic or chaotic environmental 
fluctuations) and environmental feedbacks (e.g. plant–
soil feedbacks), we allow for a finite number m of auxil-
iary variables A =

(

A1,A2, … ,Am

)

, as proposed by Patel 
and Schreiber (2018) and extended to stochastic models 
by Benaïm and Schreiber (2019).

where fi is the per-capita growth rate of species i and gj 
governs the dynamics of the j-th auxiliary variable. There 
are multiple definitions in the theoretical literature about 
what coexistence means for these models (Schreiber, 2006). 
For invasion-based metrics, we argue that the concept of 
permanence for deterministic models (stochastic per-
sistence for stochastic models) is most appropriate (Butler 
& Waltman,  1986; Schreiber et al.,  2011; Schuster et 
al., 1979; Sigmund & Schuster, 1984). Permanence corre-
sponds to a global attractor bounded away from extinc-
tion, that is, after an initial transient phase, all species 
have positive densities above a certain threshold, even 
after rare large disturbances (e.g. disturbances that reduce 
species densities by a high percentage). Unlike classical 
equilibrium-based concepts, permanence allows for co-
existence with equilibrium or non-equilibrium dynamics 
(e.g. periodic, chaotic dynamics or stochastic fluctuations, 
see Appendix  D). However, consistent with limitations 
of invasion growth rate approaches, a system may have a 
stable equilibrium with all species present yet not be per-
manent due to the presence of an alternative stable state 
supporting only a subset of species (e.g. Figure 2d,e).

Mathematical theory for characterizing perma-
nence or stochastic persistence using invasion growth 
rates has been developing for several decades (Benaïm 
& Schreiber,  2019; Chesson,  1982; Chesson & Ell-
ner,  1989; Ellner,  1989; Hening et al.,  2021, 2022; Hen-
ing & Nguyen,  2018; Hofbauer,  1981; Hofbauer & 
Schreiber, 2010; Patel & Schreiber, 2018; Schreiber, 2000; 
Schreiber et al., 2011). Invasion growth rates, here, cor-
respond to the average per-capita growth rate of species 
missing from a subcommunity of the n species. Hence, 
an invasion growth rate, in general, depends on the sub-
community context. By context, we mean some long-
term stationary behaviour of the model for a subset of 
species S. This stationary behaviour may correspond to 
equilibrium or non-equilibrium dynamics (see Appen-
dix D for non-equilibrium dynamics). In the case of an 
equilibrium, 

(

N̂ , Â
)

, the invasion growth rate of a species 
i absent from this equilibrium (i.e. N̂ i = 0) is simply its 
per-capita growth rate at the equilibrium

When this invasion growth rate is positive, species i is pre-
dicted to increase at an exponential rate when introduced 
at low densities into the community. When ri(S) is negative, 
species i is predicted to decrease at an exponential rate.

MCT rests on the principle that positive invasion 
growth rates imply coexistence (Barabás et al.,  2018; 
Ellner et al., 2019; Grainger, Levine, et al., 2019; Spaak 
& De Laender, 2020). A commonly used version of this 
principle, what we call the naive invasion criterion, goes 
back to MacArthur and Levins (1967) who wrote ‘such a 
community can retain all n species if any one of them can 
increase when rare, that is, when [species i's density] Xi is 
near zero and all the others are at the equilibrium values 
[or stationarity] which they would reach in the absence of 
Xi’. From the start, this was merely a heuristic criterion 
and did not actually guarantee coexistence (Chesson & 
Ellner, 1989; Turelli, 1978, 1981). There are three concep-
tual issues with this heuristic. First, not all of the n − 1 
subcommunities may exist and the invasion analysis 
cannot be performed. A typical example is a two-species 
predator-prey community in which the one-species sub-
community consisting only of the predator cannot per-
sist without its prey. In empirical applications of MCT, 
this limitation has caused most problems (McPeek, 2022; 
Saavedra et al., 2017; Spaak, Carpentier, et al., 2021). Sec-
ond, all invasion growth rates might be positive for all 
possible n − 1 subcommunities, yet the species may not 
actually coexist (Wang et al., 2011). This can arise when 
some species experience an Allee effect (Gil et al., 2019; 
Wang et al., 2011). For example, Gil et al. (2019) consid-
ered competing species using intra- and interspecific 
social information to reduce predation risk. When pre-
dation risk is high and interspecific social information 
substantially lowers this risk, invasion growth rates 
at the single-species equilibria can be positive despite 

(1)
dNi

dt
= Nifi(N ,A) i = 1, 2, … , n,

(2)
dAj

dt
= gj(N ,A) j = 1, 2, … ,m,

ri(S) = fi

(

N̂ , Â
)

.
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predation driving both species extinct whenever they 
are simultaneously at low densities (Figure  2d). Third, 
this heuristic does not provide a way to deal with only a 
subset of the species coexisting. Community assembly, 
often, may lead to an end state with only a subset of the 
available species. Yet, should not we be interested in why 
the other species are unable to invade?

A REVIEW OF 
PERM A N ENCE TH EORY

To address the issues associated with the naive inva-
sion criteria, we review the work of Hofbauer and 
Schreiber (2022) who introduced the concepts of an inva-
sion scheme and an invasion graph. The invasion scheme 
corresponds to the invasion growth rates at not only all 
possible subcommunities but also the n − 1 subcommuni-
ties. Specifically, for any subcommunity S supporting an 
equilibrium 

(

N̂ , Â
)

 (or, more generally, a stationary dis-
tribution mS(N ,A)dNdA—see Appendix D), we compute 
the invasion growth rates ri(S) for all the species where 

ri(S) = 0 for all i in S. The invasion scheme is the matrix 
ri(S) with the subcommunities S as the rows and the spe-
cies as the columns (Figure 1).

Next, we define the invasion graph (Figure 2), which 
is related to other graphs from community assembly 
theory (Law & Blackford,  1992; Law & Morton,  1996; 
Lockwood et al.,  1997; Morton et al.,  1996; Serván & 
Allesina,  2021; Song et al.,  2021), but is defined purely 
in terms on the invasion growth rates. The subcommu-
nities S are the vertices of the graph and the edges be-
tween vertices are potential transitions due to invasions. 
Specifically, there is a directed edge from S to T ≠ S if 
(i) all species i in T  but not in S could invade the sub-
community S, that is, ri(S) > 0, and (ii) all species j in 
S but not in T  could not invade the subcommunity T , 
that is, rj(T ) < 0. Intuitively, the first condition implies 
that all species gained in the transition from S to T  can 
invade subcommunity S. The second condition implies 
that all species lost in the transition are properly lost and 
cannot re-invade T . The relevance of these transitions 
to the community dynamics follows from a key result of 
Hofbauer and Schreiber (2022): if there is a community 

F I G U R E  1   We propose a new workflow for modern coexistence theory (MCT). For a given community of interest, the typical workflow 
of MCT (yellow arrows) first computes the invasion growth rate of each species into the respective resident community. Then, if all n − 1 
communities, and hence invasion growth rates, exist one can apply the metrics of MCT. If not all n − 1 communities exist, no analysis is 
possible. Instead (blue arrows), we propose to compute the entire invasion scheme, that is, identify equilibria (or stationary distributions) of all 
possible subcommunities and compute their invasion growth rates. Given this invasion scheme, we compute the invasion graph. If this invasion 
graph is acyclic, we select an end-state community for which all species coexist and no other species could invade (community in red circle); 
to check permanence of this end state, one has to verify the invasion sub-graph of this end state. Finally, we apply the invasion growth rate 
partitioning methods of MCT to the positive invasion growth rates associated with all realized n − 1 subcommunities (solid arrows in last panel) 
to understand the coexistence of the species in the end state. To understand why some species are excluded from the end state, we analyse the 
(negative) invasion growth rate of those species into the end state (not graphically represented). For the invasion graphs: the directed arrows 
show the transitions from one subcommunity to another due to invasions (see text).
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trajectory 
(

N1(t), … ,Nn(t),A1(t), … ,Am(t)
)

 that in for-
ward time converges to an equilibrium supporting the 
species in T  and that in backward time converges to an 
equilibrium supporting the species in S, then the inva-
sion graph includes the transition S → T  (see Appen-
dix A for more details). Understanding all possible ways 
that community trajectories can connect community 
equilibria (or stationary distributions) is essential for the 
mathematical theory. Importantly, a transition S → T  
may involve species outside of subcommunities S and T  . 
For example, Figure 2e shows an invasion graph where 
the transition from a subcommunity consisting of three 
coexisting competitors (S = {1,2,3}) to a subcommunity 
consisting of one competitor (T = {1}) that occurs due to 
the invasion of a predator (species 4).

The invasion graph can be viewed as a representation 
of community assembly under three key assumptions: (i) 
there is a fixed species pool (i.e. the species included in 
Equation 3), (ii) invasions involve (infinitesimally) small 
propagules and (iii) invasions are sufficiently separated in 
time that the species' densities and the auxiliary variables 
reach their new equilibrium state (or stationary distribu-
tion). These assumptions are consistent with classical, 
community assembly theory (Law & Blackford,  1992; 
Law & Morton,  1996; Lockwood et al.,  1997; Morton 
et al., 1996; Post & Pimm, 1983; Serván & Allesina, 2021). 
While all transitions in the invasion graph are critical for 
evaluating coexistence, one may consider only a subset 
of these transitions for a model of community assembly. 
For example, classical assembly theory usually focuses 
on single species invading propagules (see, however, the 
‘1066 effect’ in Lockwood et al. (1997) due to multispe-
cies invasions).

An invasion graph can either contain a cycle or not. A 
cycle is a sequence of invasions starting at a subcommu-
nity A that eventually returns to this subcommunity, for 
example, invasions cause a transition from the subcom-
munity S1 = A to subcommunity S2, from subcommunity 
S2 to subcommunity S3,… and ultimately, from subcom-
munity Sm back to subcommunity S1. The classic exam-
ple of a cycle is the rock–paper–scissor community (May 
& Leonard, 1975) where the cycle is of length m = 3 and 
the subcommunities consist of single species (Figure 2f). 
More complex cycles arise naturally in multi-trophic 
communities (Law & Morton,  1996; Schreiber,  1998; 
Schreiber & Rittenhouse,  2004; Spaak et al.,  2023). 
When there are no cycles, the invasion graph is acyclic. 
We focus on these acyclic graphs as they appear to be 
more common in empirical studies (Chase,  2003) and, 
more to the point, the mathematical theory can only 
deal with certain types of cyclic invasion graphs (see Ap-
pendix B) and MCT has yet to develop an approach that 
applies to cyclic invasion graphs. Notably, unlike acyclic 
invasion graphs, cyclic invasion graphs may not identify 
key transitions associated with invasions. For example, 
even if the rock–paper–scissor community coexists, the 
invasion graph does not identify the transition from the 

single-species to the three-species communities. This 
failure stems from community trajectories that converge 
in forward time to the three-species equilibrium and 
do not converge in backward time to any single-species 
equilibrium.

For acyclic invasion graphs, Hofbauer and Sch-
reiber  (2022) proved that the community is permanent 
if and only if for each of the subcommunities S, there is 
at least one species i that can invade, that is, ri(S) > 0. 
Importantly, these are not heuristics, such as the naive 
invasion criterion, but rather mathematically rigorous 
results under suitable technical assumptions (Hofbauer 
& Schreiber,  2022)—see Appendix  A for a discussion 
of these assumptions. Importantly, this invasion graph 
solves all the previous issues of the naive invasion 
criterion.

The first issue of naive invasion growth rates that 
not all n − 1 subcommunities might exist causes no 
problem. The invasion graph is defined for all sub-
communities S that do exist; if some do not exist, they 
are simply not part of the invasion graph (Figure 2b). 
Communities with Allee effects are frequent examples 
for the second issue, that is, all naive invasion growth 
rates might be positive yet the community does not 
coexist (Barabás et al., 2018; Schreiber et al., 2019). In 
these examples, the invasion growth rates of the in-
vader into the n − 1 subcommunities might be positive, 
but the invasion growth rates into the empty state, that 
is, S being the empty set, are not positive (Figure 2d). 
This implies that the species cannot coexist in the sense 
of permanence. It is possible, however, that there are 
alternative stable states including one supporting all 
species and another corresponding to extinction of 
all species. Hence, coexistence may be possible in a 
weaker sense than permanence. For the third issue, the 
invasion graph identifies which subcommunities are 
community assembly endpoints (Figure  2c,e). These 
are subcommunities S such that (i) the invasion graph 
restricted to the species in S ensures coexistence, and 
(ii) the invasion growth rates ri(S) of all species i  not in 
S are negative. For an acyclic invasion graph, there is 
at least one end state for community assembly. More-
over, this end state can be achieved by a (potentially 
non-unique) sequence of single-species invasions.

A N EW APPROACH TO COM BIN E  
MCT W ITH PERM A N ENCE  
TH EORY

In the previous section, we discussed how we can use in-
vasion growth rates of all possible subcommunities, via 
the invasion graph, to characterize all possible paths of 
community assembly, identify end states of community 
assembly and improve our assessment of coexistence 
and invasion resistance for these end states. However, 
the main achievement of MCT is not assessing whether 
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species can coexist, but rather unifying our understand-
ing of why species coexist.

In principle, we could directly apply the methods 
from MCT to the entire invasion scheme, however, 
it is less clear what additional insight we might gain 

from this (but see Box 1), let alone how we would inte-
grate across all of this information to make statements 
about the relative importance of different coexistence 
mechanisms at the scale of the community. Specif-
ically, the potential number of invasion growth rates 

F I G U R E  2   Six examples of invasion graphs; (a) where all missing species have positive invasion growth rates and all subcommunities exist; 
(b) where not all n − 1 = 2 subcommunities exist, yet the full community coexists; (c) where not all species coexist, but there is unique end state 
{1, 2}. (d) Allee effects with strong inter- and intraspecific facilitation, that is, the subcommunities are all feasible and stable, but upon loss of 
a species this species cannot be reintroduced—such a community is not permanent. (e) With a resident strikes back phenomena. Species 4 (a 
predator of species 2 and 3) can invade community {1, 2, 3} resulting in species 1 competitively excluding species 2 and 3. This results in species 
4 going extinct, despite its positive invasion growth rate. (f) An invasion graph with a cycle ({1} → {3} → {2} → {1}). Consequently, species 
coexistence depends on more than the signs of the invasion growth rates. Traditional MCT only applies to the community in panel (a) while the 
new method applies to communities (a)–(e). The black and purple circles are realized subcommunities and height corresponds to the species 
richness of the subcommunity. Red circles correspond to non-realized subcommunities and purple circles correspond to potential end states. 
The directed edges show the transitions from one subcommunity to another due to invasions (see text). Blue arrows indicate transitions that 
increase species richness by 1, grey arrows indicate transitions increasing species richness by more than 1, yellow arrows indicate transitions 
with no change in species richness and red (see Figure 3) arrows indicate transitions that decrease species richness.

(a) (b) (c)

(d) (e) (f)
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grows super-exponentially (up to ∑n

k=1

�

n

k

�

k = n2n−1  
 
invasion growth rates), for example, for a 10 species 
community, we could have up to 5120 invasion growth 
rates. Rather, we suggest focusing on a specific subset 
of all these invasion growth rates, the ones which po-
tentially hold the most information about the coexis-
tence of the community and are best linked to current 
practices of MCT.

Suppose, for the moment, that all n species are able 
to coexist. Then, we propose to focus on the invasion 
growth rates of all potentially persistent communities 
with n − 1 species. These invasion growth rates focus 
one's attention on the most proximate causes of coex-
istence. Indeed, for the full community to assemble 
via single-species invasions, the final step of assembly 
would involve the invasion of the missing species from a 

community with n − 1 species (see Appendix E and Box 1 
for alternative choices).

But what if not all n species coexist? Any collection 
of n species with an acyclic invasion graph has at least 
one community S corresponding to an end state of com-
munity assembly. To understand the coexistence of the 
species in S, we apply the approach above replacing ‘n’ 
with the number of species k < n in S. Furthermore, to 
understand why this community S is invasion resistant, 
we apply the approach of MCT to the invasion growth 
rates of the missing species. As these invasion growth 
rates ri(S) are negative, the methodology of MCT is used 
to understand what contributes most to these negative 
values.

Our approach therefore first computes all subcom-
munities and invasion growth rates to assess whether, 
respectively which, species coexist. Then, we apply the 
methods of MCT to at most n invasion growth rates to 

BOX 1  Alternative uses of the invasion graph

In the main text, we focused on applying the methods of MCT to the n − 1 communities, that is, the last steps 
of the community assembly, for two reasons. First, after the loss of any species, reassembly of the community 
depends on the invasion growth rate into one of these n − 1 communities. Second, the resulting applications 
most resemble the current use of MCT. However, the invasion graph contains much more information. We 
offer three alternative applications of MCT to the invasion graph.

1. What hampers the formation of missing n − 1 communities? After identifying an end state without all of 
its n − 1 communities, we may ask why a certain species i does not have its corresponding n − 1 commu-
nity. Equivalently, why does not this n − 1 subcommunity coexist? As an example, we take the community in 
Figure 3c. Here, species 4 does not have an n − 1 community, as the other species cannot coexist. The other 
species cannot coexist because species 5 has a negative invasion growth rate into the community S = {1,2,6}, 
so the community S is an end state with respect to the species (1,2,5,6). However, species 4 can invade S leading 
to the community T = {1,2,4,6}. Importantly, species 5 has a positive invasion growth rate in this new com-
munity T . Here, the invasion of species 4 into S greatly increases the niche differences of species 5, but only 
slightly increases its fitness differences, leading to an overall positive invasion growth rate of species 5. Hence, 
species 4 indirectly facilitates species 5 and, consequently, the {1,2,5,6} cannot form in the absence of species 
4. In general, we conjecture that the n − 1 associated with a species i only fails to form if species i is indirectly 
facilitating one of the other species in a similar way, that is, when species i invades, the community S formed 
in its removal, which leads to a new community T  that one of the other missing species in S can invade.

2. How do the metrics of MCT change along community assembly? Suppose we have a community of n spe-
cies where all subcommunities exist (e.g. Figure  2a with n = 3) and are interested in the assembly path 
� → {1}→ {1, 2}→ ⋯ → {1, 2, … , n − 1}. In this case, we might ask how the invasion growth of the species 
n changes along this assembly path and how the different metrics of MCT are affected by increasing species 
richness. More generally, we might ask whether certain mechanisms are stronger or more important at the be-
ginning of community assembly versus the end of community assembly. This may shed new light on the ques-
tion of why community assembly eventually stops and what limits diversity. For example, in Figure 3, niche 
and fitness differences seem to exhibit greater variation at the start of the assembly process (Figure 3b) than at 
the end of the assembly process (Figure 3d); this seems to be true throughout the assembly process (Figure E2).

3. Which mechanisms are responsible for the creation of assembly loops? We mostly excluded invasion graphs 
containing cycles as the invasion graph may not capture all transitions in the ecological dynamics, assessing 
permanence becomes more challenging and it is unclear how best to apply the methods of MCT to them. 
However, we could apply the methods of MCT along a cycle to understand what drives the alternating positive 
and negative invasion growth rates along the cycle and, thereby, potentially help us understand coexistence of 
invasion graphs with cycles.
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understand why these species coexist. We provide auto-
mated code for all these steps.

APPLICATION TO 
EM PIRICA L DATA

We now focus on examples of the modern coexistence 
literature where our approach would give us additional 
insight that was not available with the naive invasion 
criterion. We here assume that readers are familiar with 
the methods to compute niche and fitness differences 
or relative non-linearities and storage effects (Ellner 
et al., 2019; Spaak, Godoy, et al., 2021). There are many 
different methods to compute niche and fitness differ-
ences (see Spaak, Ke, et al., 2022 for a review) and mul-
tiple methods to assess the storage effect and relative 
non-linearity (Barabás et al.,  2018; Chesson,  2003; Ell-
ner et al., 2019). We chose the methods of Spaak, Godoy, 
et al. (2021) as it does not rely on a pair-wise comparison 
of species and Ellner et al. (2019) as it is easiest to apply 
to complex communities.

Fitness versus niche differences in 
competing plants

Spaak, Carpentier, et al. (2021) investigated how species 
richness affects niche and fitness differences in 33 em-
pirical multi-species Lotka–Volterra communities. For 
many of these communities, they were not able to com-
pute niche and fitness differences, as the n − 1 communi-
ties did not coexist.

We focus on a six species community of competing 
plants (Geijzendorffer et al.,  2011) and compute their 
niche and fitness differences (see Appendix C). The inva-
sion graph for this community is acyclic (Figure 3a) and 
has a unique end state consisting of species {1,2,4,5,6} . 
However, for this end state, not all n − 1 = 4 subcommu-
nities exist; therefore, Spaak, Carpentier, et al.  (2021) 
did not compute niche and fitness differences for this 
end state (Figure 3c). With our new approach, we focus 
solely on the positive invasion growth rates of species 1, 
2 and 5, as these species define the only n − 1 subcom-
munities of the {1,2,4,5,6} community. We compute the 
niche and fitness differences of the competing species 
1, 2 and 5 in presence of the other species—{1,2,4,6} for 
species 5 , {1,4,5,6} for species 2 and {2,4,5,6} for species 1  
(Figure  3d). For each of these species, coexistence is 
mainly possible due to large niche differences, including 
strong facilitation for species 5. In contrast, the fitness 
difference component of species 3's invasion growth 
rates into the resident community exceeds the niche dif-
ference component (Figure 3d). Consequently, species 3 
is excluded. We, therefore, understand that the coexisting 
species can coexist due to strong facilitation and unique 
niches; conversely, the excluded species is excluded due 

to too low niche differentiation and not due to low com-
petitive ability.

Fluctuating coexistence mechanisms for floral 
yeast communities

Letten et al. (2018) studied coexistence for four yeast spe-
cies competing for amino acids in flowers with tempo-
rally fluctuating sugar concentrations. They compute 
relative non-linearity and storage effects for all six pair-
wise combinations of species. We here repeat their analy-
sis, but focus on the entire community at once. Consistent 
with Letten et al. (2018), the invasion graph of this com-
munity (Figure 4a) has only one end state consisting of 
species 1 and 2. Coexistence of 1 and 2 reduces the usual 
mutual invasibility criteria, that is, both n − 1 subcom-
munities of the n = 2 community {1, 2} exist. Hence, the 
understanding of why species 1 and 2 coexist remains the 
same as Letten et al. (2018)'s analysis of the {1, 2}.

Our approach potentially changes how we interpret 
the exclusion of species 3 and 4. To understand why spe-
cies 3 and 4 are excluded, we decompose the invasion 
growth rates ri into fluctuation-independent effects (Δ0

i
) 

and fluctuation-dependent effects. Furthermore, we de-
composed the effects of fluctuating sugar concentration 
and fluctuating resource concentrations into relative 
non-linearities (ΔS

i
 and ΔR

i
) and storage effects (Δ(R#S)

i
 

and Δ(RS)

i
) using the method of Ellner et al. (2019). How-

ever, depending on which resident community S they in-
vade, our understanding of their exclusion may change. 
Letten et al. (2018) focused on pair-wise coexistence and 
therefore analysed the invasion growth rates of species 
3 and 4 into the resident communities consisting of only 
species 1 (blue bars) or only species 2 (green bars), that is, 
the computed ri(S) with i = 3, 4 and S = {1} or S = {2} . 
For our approach, we compute invasion growth rates 
r3(S), r4(S) into the combined community (S = {1, 2}) 
of species 1 and 2 coexisting (orange bars). For species 
3 and 4, the positive storage effect Δ(R#S)

i
 and the posi-

tive relative non-linearity for the resource concentration 
(ΔR

i
 ) are negated by the negative relative non-linearity for 

sugar concentration (ΔS
i
), leading to an invasion growth 

rate ri which is approximately equal to the fluctuation 
independent growth rate (Δ0

i
). Additionally, we see that 

the coexistence mechanisms for the invasion into the 
subcommunity {1, 2} are approximately the mean of the 
coexistence mechanisms for the invasion into the sub-
community {1} and the subcommunity {2}.

DISCUSSION

MCT offers reliable tools to understand why species do 
or do not coexist in two-species communities or com-
munities with diffuse interactions, but so far lacked 
tools to understand what limits diversity in species-rich 
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communities. As such, MCT allows understanding of 
only one side of the biodiversity coin in species-rich 
communities. Our proposed changes hold the poten-
tial to extend our understanding in two ways. First, 

we separate the process of assessing whether a commu-
nity coexists from understanding why this community 
coexists. This allows us to focus on only the invasion 
growth rates of the existing n − 1 subcommunities 

F I G U R E  3   We applied the new method using our publicly available code to a dataset from Spaak, Carpentier, et al. (2021). (a) The 
acyclic invasion graph of the non-permanent six-species community where {1,2,4,5,6} is a permanent and invasion-resistant subcommunity. 
(b) Assessing pair-wise coexistence reveals that species 3 is excluded by species 4 and species 5, species 5 is excluded by species 6 and species 
6 is excluded by species 4. This pair-wise analysis does not allow us to draw any conclusions about why species 3 is excluded from the full 
community. (c) For the invasion graph in (a) restricted to {1,2,4,5,6}, only the removal of species 1, 2 and 5 define n − 1 communities. (d) For 
species 1,2 and 5 niche differences are strong enough to overcome fitness differences. Coexistence of the species 1, 2 and 5 is mainly possible due 
to large niche differences, including strong facilitation for species 5. Niche differences cannot overcome fitness difference of the competitively 
excluded species 3. The other species (4 and 6) are not explicitly included into the coexistence analysis, as they do not form an n − 1 community. 
The analysis of the entire community, compared to the pair-wise analysis shown in panel (b), gives a more complete understanding of why 
species 3 is excluded: it has the lowest fitness differences but not sufficiently strong niche differences. Panels (a)–(d) were created using the 
automated code to compute the invasion graph and niche and fitness differences for Lotka–Volterra communities. Arrow colours are identical 
to Figure 2.

(a) (b)

(c) (d)

 14610248, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.14302 by U

niversity O
f C

alifornia - D
avis, W

iley O
nline L

ibrary on [14/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



      |  1849SPAAK and SCHREIBER

without having to worry about the non-existing n − 1 
subcommunities, the most frequent issue in applica-
tions of MCT to multi-species communities (Saavedra 
et al., 2017; Spaak, Carpentier, et al., 2021). Second, for 
a non-coexisting species j, we apply the methods of 
MCT to the invasion growth rate of species j into this 
coexisting subcommunity.

Our new approach has different implications for 
three different community types; (1) Our new approach 
does not change any analysis for a community where 
all n species coexist and all n − 1 communities exist (e.g. 

Figure 2a), which might be the majority of the existing 
empirical data used in MCT (Buche et al.,  2022). (2) 
Our new approach allows the analysis of a community 
where all n species coexist, but not all n − 1 commu-
nities exist (e.g. Figure 2b), which were previously left 
unanalysed (Spaak, Carpentier, et al., 2021). (3) Poten-
tially most importantly, for a community where only 
k < n of the n species coexist, we can not only analyse 
why these k species coexist using MCT but we can also 
analyse why the other n − k species are excluded and 
understand coexistence also Marwan non-coexistence 

F I G U R E  4   Letten et al. (2018) analysed the coexistence of four competing yeast species that are not permanent (a). Species 1 and 2 can 
coexist (b) and exclude species 3 and 4. Naive invasion growth rate approach would explain their exclusion by computing their invasion growth 
rates into the subcommunities consisting of species 1 or species 2 only (green and blue bars in (c) and (d)). However, more informative is the 
decomposition of the invasion growth rates into the subcommunity consisting of species 1 and 2 (orange bars in (c) and (d)). Panels (a) and (b) 
were created using the automated code we provided to compute the invasion graphs. Arrow colours are identical to Figure 2.

(a) (b)

(c) (d)
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(e.g. Figures 2c,e, 3a and 4a). The understanding of the 
coexistence of the k species subcommunity depends 
solely on the k species itself. The understanding of the 
non-coexistence of any other species i  depends solely 
on the k species and the species i  itself, that is, the 
excluded species i  does not affect our understanding 
of coexistence or non-coexistence of any of the other 
species.

MCT has helped us to understand how different 
drivers promote coexistence, such as phylogeny (Godoy 
& Levine,  2014; Narwani et al.,  2013), functional traits 
(Gallego et al.,  2019; Kraft, Godoy, et al.,  2015) or en-
vironmental conditions (Bimler et al.,  2018). However, 
because of the limitations of MCT, this work is almost 
exclusively done on two-species communities or com-
munities with diffuse interactions, in part because MCT 
has been developed to understand how species from one 
guild can coexist. Consequentially, we know little about 
how multi-species communities coexist (Spaak, Carpen-
tier, et al.,  2021), especially from different guilds, and 
even less about why more species do not coexist. For ex-
ample, Godoy et al.  (2014) analysed the co-occurrence 
of 18 annual plant species and found that at most three 
of them can stably coexist according to MCT (Godoy 
et al., 2017). With our methods, one can analyse which 
of these communities are end states and why the other 
species cannot invade.

A better understanding of non-coexistence is direly 
needed, as often models fitted to empirical data pre-
dict competitive exclusion despite co-occurring spe-
cies (Buche et al., 2022; Germain et al., 2016; Godoy 
& Levine, 2014; Kraft, Godoy, et al., 2015). This mis-
match between empirical observation may stem from 
difficulties in assessing the actual underlying species 
interactions (Adler, Kleinhesselink, et al., 2018), from 
uncertainties (Bowler et al.,  2022) or from a fail-
ure to consider the correct spatial dimension (Hart 
et al., 2017; Ricklefs, 2008). However, it is also conceiv-
able that non-coexistence is more than solely the ab-
sence of coexistence. For example, alternative stable 
states are driven by positive-frequency dependence, 
while coexistence is driven by negative-frequency 
dependence (Ke & Letten,  2018; Mordecai,  2011; 
Schreiber et al., 2019) including the negative storage 
effect (Chesson,  1982, 1994; Schreiber,  2021, 2022). 
More generally, in a meta-analysis of niche and fit-
ness differences across different ecological communi-
ties, Buche et al.  (2022) found that niche differences 
of coexisting species pairs differ qualitatively from 
niche differences of competitively excluded species, 
independent of whether these were driven by positive- 
or negative-frequency dependence. However, most of 
these results stem from simple two-species commu-
nities and give little general insight into the multi-
species context. Our newly proposed method would 
allow for a deeper investigation of why species do not 
coexist.

Open problems

While our newly proposed method provides a mathemat-
ically rigorous approach to understanding coexistence, 
its application to species-rich communities provides 
computational challenges. For example, to generate the 
invasion scheme, one has to identify the equilibria asso-
ciated with all possible subcommunities, that is, all fea-
sible equilibria (Saavedra et al., 2017). Using brute force, 
this requires solving every possible subcommunity, a 
number that grows exponentially with the number of spe-
cies. This is especially prohibitive for complex models, 
for example, spatially explicit models. Importantly, our 
method reduces the complexity of determining n species 
coexistence (i.e. permanence) to finding the equilibria of 
all subcommunities, which requires a simple way to find 
these equilibria. Additionally, the computed invasion 
graph only approximates the real invasion graph, as the 
model may misrepresent the natural community, meas-
urement errors (Bowler et al., 2022) or wrong community 
model (Terry & Armitage, 2023). Empirically measuring 
the actual invasion graph maybe even more prohibitive, 
but may be possible for short-lived communities (Chang 
et al., 2023).

We propose two ways to approach this computa-
tional complexity, corresponding to a bottom-up and 
a top-down assembly (Serván & Allesina, 2021). In the 
bottom-up approach, one may devise algorithms that 
construct the invasion graph iteratively, rather than 
by brute force, by following the assembly process from 
less to more species-rich communities. In the top-down 
assembly, advocated by Ellner et al.  (2019), one may 
numerically simulate the model with all but the focal 
species i and verify that species i can re-invade this com-
munity (called − i community, Appendix  A). However, 
to identify all possible communities, one must perform 
numerical simulations for multiple initial conditions. 
Additionally, in this approach, we do not verify that the 
invasion graph is acyclic or that all communities with 
more species missing can indeed be invaded. Nonethe-
less, under the assumption of being acyclic, the compu-
tation complexity only increases linearly with species 
richness. Hence, identifying food-web topologies that 
ensure acyclic invasion graphs is an important open 
problem. For example, tritrophic food webs consisting of 
specialist predators and top predators likely have acyclic 
invasion graphs (Wolkowicz, 1989).

We do not fully understand how to deal with cyclic 
invasion graphs. We conjecture that coexistence occurs 
if there are appropriate weightings for each cycle which 
make the weighted average of the invasion growth rates 
positive along the cycle – the Hofbauer criterion (see 
Appendix B). However, it is unclear how the weightings 
from the Hofbauer criterion (see Appendix B) relate to 
the current metrics of MCT. Furthermore, unlike the 
acyclic case, the criterion in Appendix B likely is suffi-
cient for coexistence, but certainly not necessary. This 
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discrepancy stems from a long-standing mathematical 
challenge of characterizing whether cycles, known as het-
eroclinic cycles in the dynamical systems literature, cor-
respond to attractors leading to extinction or repellers 
aiding coexistence (Brannath,  1994; Hofbauer,  1994; 
Krupa,  1997). For a special class of ‘simple’ cycles,  
Hofbauer (1994) has shown that sufficient conditions for 
coexistence are also necessary.

Our method ensures permanence, a strong form of 
coexistence, ensuring that no species will go extinct even 
after a large perturbation. However, other definitions of 
coexistence, notably the existence of a positive attractor, 
are equally important (Schreiber, 2006). This is especially 
the case when species exhibit positive-frequency depen-
dence (Schreiber et al., 2019) or Allee effects (Stephens & 
Sutherland, 1999). When these mechanisms are operating, 
communities can exhibit alternative stable states support-
ing all species (coexistence) and subsets of species (non-
coexistence). In these cases, invasion growth rates only 
help in identifying the latter alternative stable states, not 
the former. The theory of structural stability of feasible 
equilibria provides some tools for identifying the poten-
tial existence of coexistence at stable equilibria (Saavedra 
et al., 2017). Coupling this theory with bifurcation theory 
(Guckenheimer & Holmes,  2013) provides a general ap-
proach to identifying non-equilibrium, positive attrac-
tors. However, equilibria-based bifurcations are not the 
only source of attractors of coexistence. Moreover, it is 
unclear how to integrate these bifurcation methods into 
MCT (see, however, Barabás et al., 2012, 2014).

CONCLUSIONS

We have proposed a more general method to assess coexist-
ence of a multi-species community. This method provides 
an essential link between MCT and community assembly. 
For many communities analysed so far, where all species 
coexist and naive invasion growth rate criterion is appli-
cable, nothing has changed. However, with the method, 
we can now apply the tools of MCT to species-rich com-
munities (Chesson,  2018; Spaak, Carpentier, et al.,  2021) 
including multi-trophic communities (Godoy et al., 2018; 
Shoemaker et al., 2020; Spaak, Godoy, et al., 2021) where 
the naive criterion cannot be applied. This method also 
identifies the end states of community assembly when all 
species cannot coexist and helps explain why end states are 
invasion resistant. Looking forward, our method may pro-
vide insights into how the balance of coexistence mecha-
nisms shifts during community assembly.
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A PPEN DI X A

MATHEMATICAL ASSUMPTIONS, −i 
COMMUNITIES AND EXTENSIONS

In this Appendix, we describe the mathemati-
cal assumptions introduced in Hofbauer and 
Schreiber  (2022) and discuss how these assump-
tions can be relaxed using techniques introduced by 
Schreiber (2000). As stated in the main text, we focus 
on continuous-time models of n interacting species 
with non-negative densities N =

(

N1,N2, … ,Nn

)

. To 
allow for population structure (e.g. discrete habitat 
patches, stages and genotypes), temporal forcing (e.g. 
periodic or chaotic environmental f luctuations) and 
environmental feedbacks (e.g. plant–soil feedbacks), 
we allow for a finite number m of auxiliary variables 
A =

(

A1,A2, … ,Am

)

 which can be positive or nega-
tive. Many models often used in MCT do not have 
any auxiliary variables, for example, Lotka–Volterra 
models and general Lotka–Volterra community mod-
els as well as many annual plant models (Godoy & 
Levine,  2014; Levine & HilleRisLambers,  2009). 
Conversely, resource competition models have the 
resource densities as auxiliary variables (Letten et 
al., 2017) and the lottery model, as well as many simi-
lar models have the environment as an auxiliary vari-
able (Chesson, 1994). The use of auxiliary variables is 
discussed in Patel and Schreiber  (2018) and Benaïm 
and Schreiber (2019).

The per-capita growth rate fi(N ,A) of species i de-
pends on both the species' densities and auxiliary vari-
ables. The rate of change gj(N ,A) of the j-th auxiliary 

variable also depends on both densities and auxiliary 
variables.

Main assumptions of the theory

The results from Hofbauer and Schreiber  (2022) are 
based on four main assumptions. We lay out these as-
sumptions mathematically, and then provide an intuitive 
interpretation of these mathematical statements. These 
interpretations are meant to give an intuitive under-
standing of the theorem.

(1) The functions fi(N ,A) and gj(N ,A) are continu-
ously differentiable. Namely, the rates of change ( fi and 
gi) and their derivatives vary continuously with the spe-
cies densities and auxiliary variables. Importantly, this 
assumption ensures that there exists a unique solution 
(N(t),A(t)) to (5) for any initial condition (N(0),A(0)). In-
tuitively, this means that fi and gj are ‘nice’ functions and 
that we can indeed talk about densities over time. Most 
reasonable, biological function satisfies this mathemati-
cal assumption.

(2) The system (5) is dissipative: there is some posi-
tive constant K > 0 such that every solution (N(t),A(t)) 
satisfies Ni(t) ≤ K  and ∣ Aj(t) ∣ ≤ K  for all i, j and t ≥ 0 
sufficiently large. Intuitively, this implies that the spe-
cies densities and the auxiliary variables are eventually 
bounded. Counter-examples do exist, but they are typi-
cally not biologically realistic, that is, facilitation leading 
to an explosion of densities or unlimited evolution allow-
ing infinitely large species.

The final two assumptions concern stationary dis-
tributions p(N ,A)dNdA that are ergodic: A stationary 
distribution that cannot be written as a non-trivial con-
vex combination of two other stationary distributions. 
Ergodicity of a stationary distribution implies there 
is a unique set of species, denoted S(p) ⊂ {1, 2, … , n} 
(‘the support of p’), such that �


p(N ,A)dNdA = 1 where 

 =
{

(N ,A):Ni > 0 iff i ∈ S(p)
}

. In words, S(p) is the 
set of species whose densities are positive at this distribu-
tion. Using an argument introduced in Schreiber (2000), 
Lemma 1 of Hofbauer and Schreiber (2022) implies that 
the average per-capita growth rate of species supported 
an ergodic stationary distribution equal to 0, that is, 
ri(p) = ∫ fi(N ,A)p(N ,A)dNdA = 0 for all i ∈ S(p). Intui-
tively, if species' densities are bounded from above and 
away from zero, then in the long term, its average per-
capita growth rate is 0.

(3) The invasion growth rates of all the missing spe-
cies j ∉ S(p) are non-zero, that is, ri(p) ≠ 0. The proof of 
Schreiber (2000; Theorem 4.1) suggests that this assump-
tion is often met. Two neutral species would violate this 
assumption, but this is a non-generic, yet theoretically 

(3)

dNi

dt
=Nifi(N ,A) i=1, 2, … , n,

dAj

dt
=gj(N ,A) j=1, 2, … ,m.
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instructive, situation. Hening et al.  (2022) proved that 
this assumption is generic for stochastic differential 
equation models.

(4) The most important assumption is that the signs of 
the invasion growth rates are consistent among all com-
munities represented by an ergodic stationary distribu-
tion. More precisely, if p(N ,A)dNdA and q(N ,A)dNdA 
are two ergodic stationary distributions supporting the 
same species (i.e. S(p) = S(q)), then

Intuitively, this assumption implies that if we know which 
species are present, then we know which absent species 
can invade. This assumption is automatically true if for 
each combination of species, there is only one stationary 
distribution.

Overall, assumptions 1–3 are technical mathematical 
assumptions that likely are met for most models. How-
ever, assumption 4 is not purely a technicality and can be 
violated by reasonable biological systems. Importantly, 
all four assumptions are met for general Lotka–Volterra 
models. An important class of models for which these as-
sumptions are naturally met are general Lotka–Volterra 
models where the per-capita growth rates are linear func-
tions of the species densities, that is, fi(N) =

∑

jaijnj + bi. 
For dissipative Lotka–Volterra models (see, e.g. Hofbauer 
and Sigmund (1998, theorems 15.2.1,15.2.4), for sufficient 
conditions), the remaining three assumptions are generi-
cally met, that is, for arbitrarily small perturbations of A 
and b, one can ensure that the three assumptions are met. 
This follows from the time-averaging property of Lotka–
Volterra systems (Hofbauer & Sigmund, 1998, Theorem 
5.2.3) and that generically the per-capita growth rates at 
equilibria satisfy the third assumption.

For non-Lotka–Volterra systems, however, it is possible 
for the per-capita growth rates of a missing species to have 
opposite signs at different ergodic stationary distributions. 
For example, this failure arises in models of two preda-
tor species competing for a single prey species (McGehee 
& Armstrong, 1977). If one predator has a Type II func-
tional response, then the predator–prey subsystem may 
simultaneously have an unstable equilibrium (defining one 
ergodic stationary distribution) and a stable limit cycle (de-
fining another ergodic stationary distribution). McGehee 
and Armstrong  (1977) showed that the invasion growth 
rates of the other predator species may be positive at the 
stable limit cycle but negative at the unstable equilibrium. 
A similar phenomenon arises in models of two prey species 
sharing a common predator (Schreiber, 2004).

What S → T  means dynamically

A key result proved by Hofbauer and Schreiber  (2022) 
highlights what aspects of the community dynamics 
are captured by the invasion graph. Roughly, this result 
states that if a solution (N(t),A(t)) converges in forward 

time to an equilibrium, periodic orbit, etc. correspond-
ing to community T , but in backward time converges 
to an equilibrium, periodic orbit, etc. corresponding to 
community S, then the invasion graph includes the tran-
sition S → T . More precisely, one can define the �-limit 
set of the solution (N(t),A(t)) to be the set of points (N ,A) 
such that 

(

N
(

tk
)

,A
(

tk
))

→ (N ,A) as k → ∞ for some se-
quence of times t1, t2, … with tk → ∞. The �-limit set of 
this solution is defined similarly except that tk → − ∞. 
If for a solution (N(t),A(t)), its �-limit set is supported 
by the species in T  and its �-limit set is supported by the 
species in S, then Hofbauer and Schreiber (2022) proved 
that the invasion graph includes the transition S → T .

The coexistence criterion and − i communities

When the four assumptions are met, the invasion graph 
can be defined by only considering the signs of invasion 
growth rates associated with communities supported by 
at least one ergodic stationary distribution. For this rea-
son, the invasion scheme is formally only defined by the 
signs of invasion growth rates, not their actual values. 
Hofbauer & Schreiber  (2022, theorem 1) prove that an 
acyclic invasion graph is permanent if and only if there 
is a positive invasion growth rate for at least one missing 
species at every ergodic stationary distribution support-
ing a proper subset of species.

This result can be rephrased in terms of − i communi-
ties, a fundamental concept of coexistence theory (Ches-
son, 1994). − i communities are the subcommunities that 
form after species i is lost from the full community. In 
the context of invasion graphs, a − i community S is a 
community without species i and that resists invasion at-
tempts from all other missing species, that is, rj(S) < 0 
for j ≠ i and j ∉ S. Under suitable technical assump-
tions (Hofbauer & Schreiber,  2022), for every − i com-
munity, there are solutions (N(t),A(t)) to the community 
dynamics such that all species are initially present, and 
in forward time, the solution approaches an equilibrium 
(more generally, an ergodic stationary distribution) cor-
responding to S. Hofbauer & Schreiber (2022, corollary 
1) proved for acyclic invasion graphs, if ri(S) > 0 for all 
− i communities S and all species i, then the model is per-
manent, that is, all species i must be able to invade all − i 
communities for coexistence.

Going beyond invasion graphs: Morse decompositions

To relax the assumptions of the invasion graphs, one 
needs to introduce a different type of graph that, in 
general, is not determined solely by the invasion 
growth rates (Patel & Schreiber,  2018; Roth et al., 
2017; Schreiber, 2000). Specifically, one needs the con-
cept of a Morse decomposition for the dynamics on 
the extinction set, that is, (N ,A), where Ni = 0 for at 
least one i . Roughly (see Schreiber  (2000); Patel and 
Schreiber  (2018) for a precise definition), the Morse 

sign
(

rj(p)
)

= sign
(

rj(q)
)

for all j ∉ S(p).
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1856  |      MCT MEETS COMMUNITY ASSEMBLY

decomposition consists of a finite collection of com-
pact, invariant sets M1,M2, …Mk (e.g. equilibria, 
limit cycles, quasi-periodic motions, chaotic saddles, 
etc.) that satisfy two properties:

1.	 All the long-term dynamics are contained in the 
union of these sets, that is, all �-limit sets for the 
extinction set lie in ∪iMi. Intuitively, this implies 
that the community dynamics eventually approach 
one of the Mi.

2.	 For any initial condition where in backward time the 
solution approaches Mi and in forward time the solu-
tion approaches Mj, j ≥ i with equality only if the ini-
tial condition was in Mi.

Associated with this Morse decomposition is a di-
rected graph where the vertices are the sets M1, … ,Mk 
and there is a directed edge from Mi to Mj (where i ≠ j) 
only if there is a solution which in backward time goes 
to Mi and in forward time goes to Mj. By the defini-
tion of the Morse decomposition, this graph is acyclic. 
A sufficient condition for coexistence, in the sense of 
permanence, is that for each component Mi there is a 
species j such that their invasion growth rate is posi-
tive at every ergodic stationary distribution supported 
by Mi. In the special case that the Morse components 
always lie in the interior of the extinction faces, this 
sufficient condition can be viewed as a generaliza-
tion of the invasion graph approach of Hofbauer and 
Schreiber (2022).

A PPEN DI X B

INVASION GRAPHS WITH CYCLES

Our work focuses on the case where the invasion graph 
contains no cycles. Cycles appear to be rare in the em-
pirical data investigated by modern coexistence so far. 
Specifically, we only found one dataset with cycles 
among many investigated communities (Adler, Smull, et 
al., 2018; Chu & Adler, 2015; Godoy & Levine, 2014; Letten 
et al., 2018; Shoemaker et al., 2020; Spaak, Carpentier, 
et al., 2021; Zepeda & Martorell, 2019; see also Godoy 
et al., 2017). However, almost all these communities fo-
cused only on species in the basal trophic level; commu-
nities with multiple trophic levels might be very different 
(Law & Morton,  1996; Schreiber & Rittenhouse,  2004; 
Song et al., 2021; Spaak, Adler, et al., 2023).

In invasion graphs with cycles, a simple way to assess 
permanence in applying the Hofbauer (1981) criterion to 
the invasion growth rates is associated with all station-
ary distributions. Specifically, the Hofbauer criterion 
requires finding positive weights wi associated with each 
species such that

for every ergodic, stationary distribution p(dN, dA) 
supporting a strict subset S(p) ≠ {1, … , n} of species. 
Intuitively, 

∑

iwiri is a community-level invasion growth 
rate. If this community-level invasion growth rate is posi-
tive whenever one or more species is rare, then the commu-
nity tends to recover and all the species coexist. However, 
the Hofbauer criterion is not a necessary condition for co-
existence, only sufficient condition. That is, if such weight-
ings wi exist such that 

∑

iwiri(p) > 0, then the community 
is permanent, however, the community can be permanent 
and no such weighting exists.

If no weight wi exists that works for all stationary p, 
then we conjecture that one can verify permanence by 
applying the Hofbauer criterion separately to stationary 
distributions associated with certain cycles in the inva-
sion scheme. More precisely, we partition the vertices of 
the invasion graph into distinct subsets V , and the sub-
communities S and T  belong to the same subset if there 
is a cycle in the invasion graph that contains these two 
subcommunities. In other words, there is a sequence of 
invasions that go from S to T , and vice versa. We then 
apply the Hofbauer criterion to the set of ergodic sta-
tionary distributions p associated with each of these 
subsets V . Namely, we must find weightings wV

i
 such 

that 
∑

iw
V
i
ri(p) > 0 for all ergodic stationary distribu-

tions p(dN, dA) supporting communities S(p) lying in 
V . Intuitively, such a weighting wV

i
 ensures that we will 

eventually exit the cycles in V  and continue our path ‘up-
wards’ in the invasion graph. We conjecture that if such 
a weighting exists for all cycles, then we will eventually 
leave all these cycles and the entire community assem-
bles. However, this condition would only be sufficient 
and not necessary for a permanent community.

These two applications of the Hofbauer criterion can 
at best assess the permanence of the community. To have 
a better understanding of why the community coexists, 
one may then apply MCT with caution. If there exist 
n − 1 communities and none of the cycles contain these 
n − 1 communities, then we propose to apply MCT to 
the n − 1 communities as discussed in Box 2. In essence, 
the cycles are only important during early phases of the 
community assembly, but they are not the bottlenecks of 
coexistence. However, it is also possible that none of the 
n − 1 communities exist (Figure 2d). How we can general-
ize the methods of MCT to the Hofbauer criterion and 
cycles remains an open question.

A PPEN DI X C

NICHE AND FITNESS DIFFERENCES

We want to compute the niche and fitness differences for 
a Lotka–Volterra community with n species, given by 
1

N

dN

dt
= � −AN, where � is the vector of intrinsic growth 

rates, A is the species interaction matrix and N is the 
vector of species densities. We assume that the invasion 
graph is cycle free, that the community S, with k species, 

∑

i

wiri(p) > 0,
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is permanent and that no species i not in S can invade 
into the community S. Finally, we denote the n − 1 com-
munities of the community S as Tj, that is, Tj consists of 
all k − 1 species in S except species j. We denote J as the 
set of j for which Tj exists. The species are therefore sepa-
rated into three groups: First, the species in S for which 
a n − 1 community exists, denoted J; second, the species 
in S for which a n − 1 community does not exist, denoted 
S − J; and finally, the species not in S denoted E, as they 
are excluded.

In the example given in Figure  4a, this would imply 
J = {1, 2}, T1 = (2) and T2 = (1), S − J = {} and 
E = {3, 4}. In the example given in Figure 2a, this would 
imply J = (1,2,5), T5 = (1,2,4,6), T2 = (1,4,5,6) and 
T1 = (2,4,5,6). S − J = {4, 6} as the subcommunities T4 
and T6 do not exist and E = {3}. Note that the communi-
ties (1,2,3,6) and (3,4,5,6) are not n − 1 communities of 
the community S, as they contain the species 3 which is 
not in S.

Given these groups, we separate the intrinsic growth 
rate and the interaction matrix into these different 

groups, denoted �X for the intrinsic growth rates of spe-
cies in groups X  and AX ,Y  for the per-capita effects of 
species in group Y  on species in group X . The dynamics 
of the community model is then given by

To compute niche and fitness differences, we have to 
compute the intrinsic, invasion and no-niche growth 
rates. All of these growth rates are computed at real or 
hypothetical equilibria. When computing niche and fit-
ness differences for the species j in J, we have NE = 0 , 
we therefore omit them from the model. The species i 

(6)1

NJ

dNJ

dt
= �

J −AJJNJ −AJ ,S−JNS−J −AJENE ,

(7)

1

NS−J

dNS−J

dt
= �

S−J −AS−J ,JNJ −AS−J ,S−JNS−J −AS−J ,ENE ,

(8)
1

NE

dNE

dt
= �

E −AEJNJ −AE,S−JNS−J −AEENE .

BOX 2  How to identify assembly end states

1. Compute the invasion scheme: For each possible subcommunity S ⊂ {1, 2, … , n}, numerically compute the 
long-term dynamics of the subcommunity, that is, an equilibrium 

(

N̂ , Â
)

 or an approximation of the station-
ary density pS(dN, dA) (see Appendix D) supporting these species (i.e. �Ni > 0 or ∫ NipS(dN, dA) > 0 if and only 
if i is in S). There are 2n − 1 possible subcommunities. For each subcommunity, compute the invasion growth 
rates ri(S) of the absent species.

2. Generate the invasion graph: The subcommunities from the invasion scheme are the vertices of the invasion 
graph. For each pair of subcommunities T  and S, where S ≠ T , add a directed edge from S to T  if

Intuitively, this implies that community T could be reached from community S by invasion.

3. Check for cycles: Determine whether the invasion graph is acyclic or not. This can be done, for example, by 
using the is “dag” command from the igraph package in R (Csardi & Nepusz, 2006). If the graph is acyclic, 
continue to step 4, else use methods discussed in Appendix B.

4. Find an end state: Find an S ⊂ {1, 2, … , n} such that (a) S is uninvadable, that is, ri(S) < 0 for all species i 
not in S, and (b) for every subcommunity T  of S, there is at least one species in S that can invade T , that is, 
ri(T ) > 0 . Condition (b) ensures that the subcommunity S is permanent.

5. Analyse invasion growth rates ‘n − 1’ subcommunities of S: Coexistence of the end state S hinges on the inva-
sion growth rates from the subcommunities T  of S with exactly one less species than S. Therefore, we apply the 
methods of MCT to decompose and partition these invasion growth rates. Importantly, we potentially analyse 
the persistence of only a subset of the maximal community.

6. Analyse the invasion growth rates of excluded species (if any) of the assembly end state S: If the end-state S is 
a proper subcommunity (i.e. has less than n species), then analyse the negative invasion growth rates of the 
competitively excluded species with the methods of MCT.

We provide automated code for step 1 for Lotka–Volterra community models, steps 2–4 for any model type 
and steps 5–6 for niche and fitness differences for Lotka–Volterra community models (Appendix C).

(4)for all species i in S�T ri(T ) < 0.

(5)for all species j in T �S rj(S) > 0.
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in S − J are treated similarly to limiting factors, as 
they are not the focal species, as mentioned in the main 
text. We therefore solve Equation  (7) for NS−J and get 
NS−J =

(

AS−J ,S−J
)−1(

�S−J −AS−J ,JNJ
)

, which we can 
insert into Equation (6) to get

While appearing complicated, this is actu-
ally again a simple Lotka–Volterra community 
model with �

� = �
J −A

J ,S−J
(

A
S−J ,S−J

)−1
�
S−J and 

A� = AJJ +AJ ,S−J
(

AS−J ,S−J
)−1

AS−J ,J. Importantly, for 
this new Lotka–Volterra system, all species can coexist 
and all n − 1 communities exist, we can therefore compute 
niche and fitness differences as usual (Spaak, Carpentier, 
et al., 2021). This method is mathematically equivalent to 
the well-known time-scale separation (Chesson,  1990), 
however, it does not depend on the assumption of a time-
scale separation. Rather, as the growth rates are only eval-
uated at equilibria of the system, we can use the fact that 
dNS−J

dt
= 0 (Chesson & Kuang, 2008).

To compute niche and fitness differences, we have 
to compute the invasion growth rate ri = �i� −A�NJ ,−i , 
where NJ ,−i is the equilibrium density of the resi-
dent community. Additionally, we have to compute 
the hypothetical invasion growth rate where all spe-
cies interactions are absent, which is equivalent to the 
growth rate �i′. Finally, we have to compute the no-
niche growth rate where all niche differences in spe-
cies i are removed. This is achieved by multiplying 
the actual interspecific interaction strength with the 

two-species niche overlap �ij =
√

|

|

|

a�
ii
a�
jj
∕a�

ij
a�
ji

|

|

|

, that is, 

�i = �i� −
∑

j

�

�

�

�

a�
ii
a�
jj
∕a�

ij
a�
ji

�

�

�

a�
ij
NJ ,−i. Note that the scaling 

of the interspecific interaction coefficients results in no 
niche differences in the pair-wise community, but does 
not affect their fitness differences. Given these three 
growth rates, we can then compute the niche and fitness 
differences as

For the excluded species, we can compute the in-
trinsic growth rates and the invasion growth rates 

as usual, however, the invasion growth rates are de-
fined into the resident community S, opposed as to 
the usual invasion growth rates into an n − 1 com-
munity. The no-niche growth rate can be computed 
using the same scaling of the interspecific interac-
tion coefficients as discussed above (Spaak & De 
Laender, 2020).

A PPEN DI X D

STATIONARY DISTRIBUTION

Long-term ecological dynamics of a subcommunity 
S may exhibit various forms of non-equilibrium 
dynamics including periodic oscillations, quasi-
periodic motions, chaos and stochastic f luctua-
tions. These non-equilibrium dynamics may be 
endogenously driven due to species interactions, 
exogenously driven due to environmental forcing or 
due to a combination of these effects. For example, 
Figure  D1 illustrates a predator–prey subcommu-
nity S (with densities N1,N2) experiencing seasonal 
forcing of the prey's carrying capacity (determined 
by auxiliary variable A). The long-term statistical 
behaviour of these non-equilibrium subcommunity 
dynamics is often characterized by a stationary dis-
tribution (pS(N ,A)dNdA) describing the fraction of 
time, in the long-term, that the system is in any given 
configuration. These stationary distributions, as we 
discuss more explicitly below, can be approximated 
by the (multivariate) histogram of a sufficiently long 
time series of the species densities and the auxiliary 
variables.

The invasion growth rate of species i is the average 
per-capita growth rate with respect to this stationary 
distribution pS(dN, dA):

When the stationary distribution cannot be expressed as 
an average of other stationary distributions (see ergodic-
ity in Appendix A), Birkhoff's ergodic theorem implies 
that

with respect to a randomly chosen initial condition 
(N(0),A(0)) from the stationary distribution. Hence, 
one can estimate the invasion growth rates ri(S) by (i) 
simulating the subcommunity S dynamics for a suffi-
ciently long time T ≫ 1, (ii) computing the average per-
capita growth rates 1

T
∫
T

0
fi(N(t),A(t))dt for each of the 

species i  not in S and (iii) setting ri(S) = 0 for all the 
species i  in S .

(9)

1

NJ

dNJ

NJ
=�

J −AJJNJ −AJ ,S−J
(

AS−J ,S−J
)−1(

�
S−J −AS−J ,JNJ

)

=

(

�
J −AJ ,S−J

(

AS−J ,S−J
)−1

�
S−J

)

,

(10)−

(

AJJ +AJ ,S−J
(

AS−J ,S−J
)−1

AS−J ,J
)

NJ .

(11)i =
ri − �i

�i − �i
,

(12)ℱi = −
�i

�i − �i
.

(13)ri(S) = ∫
fi(N ,A)pS(N ,A)dNdA.

(14)ri(S) = T∞ lim
1

T ∫

T

0

fi(N(t),A(t))dt
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F I G U R E  D1   Seasonally forced predator–prey dynamics with marginals p
(

dN1

)

, p
(

N2

)

, p(dK) of the stationary distribution p
(

dN1, dN2, dK
)

. The (approximate) marginals pS
(

dN1

)

, pS
(

dN2

)

, pS (dA) of this stationary distribution (e.g. pS
(

dN1

)

= ∬
∞

0
pS

(

dN1, dN2, dA
)

dN2dN2) are plotted 
as histograms.

0
10

20
30

40
50

de
ns

ity
pS�dN1�

pS�dN2�

0 200 400 600 800 1000

60
12

0

time t

ca
rr

yi
ng

 c
ap

ac
ity

 K

pS�dK�

 14610248, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.14302 by U

niversity O
f C

alifornia - D
avis, W

iley O
nline L

ibrary on [14/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1860  |      MCT MEETS COMMUNITY ASSEMBLY

A PPEN DI X E

ALTERNATIVE INSIGHTS FROM THE INVASION GRAPH

F I G U R E  E 1   We investigate what hampers the formation of the n − 1 communities for species 4 and species 6. We first focus on species 
4: Panel (a) shows invasion graphs for the subcommunities when species 4 is absent. The community {1,2,6} is invasion resistant with respect 
to all species present in panel (a), yet species 4 can invade and would lead to community {1,2,4,6} (panel c). Species 5 could not invade into 
community {1,2,6} , as its niche differences were not sufficient to overcome its fitness differences. Yet, the invasion of species 4 increases the 
niche differences of species 5 that cannot invade (panel d). For species 6: similarly, the community {1,2,5} is invasion resistant with respect to 
species 4, but species 6 can invade and would lead to community {1,2,6} , as species 5 would go extinct. Species 6 increases the niche differences 
of species 4 without much affecting its fitness differences. Arrow colours are identical to Figure 2.

(a) (b)

(c) (d)
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      |  1861SPAAK and SCHREIBER

F I G U R E  E 2   For the community shown in Figure 3, we computed niche and fitness differences along the community assembly. Panels (a)–
(e) show the niche and fitness differences according to the species richness in the resident community. We note that increasing species richness 
reduces the spread of the niche and fitness differences and generally increases fitness differences, which likely limits the species richness. This 
reduction in spread is not solely due to a reduction in data points, specifically panels (b) and (c) have more data points than panel (a). Panel (f) 
shows niche and fitness differences in all richness. Panel (a) is equivalent to Figure 3b. However, the data points from Figure 3d are split into 
panels (d) and (e), as species 3 invades a community with five species. On the other hand, panels (d) and (e) contain data points not present in 
Figure 3d, as we focus not only on all possible communities with that richness but also on a subset.

(a) (b) (c)

(d) (e) (f)
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