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Abstract. To understand the relative importance of natural selection and random genetic
drift in finite but growing populations, the asymptotic behavior of a class of generalized Polya urns
is studied using the method of ordinary differential equation (ODE). Of particular interest is the
replicator process: two balls (individuals) are chosen from an urn (the population) at random with
replacement and balls of the same colors (strategies) are added or removed according to probabilities
that depend only on the colors of the chosen balls. Under the assumption that the expected number
of balls being added always exceeds the expected number of balls being removed whenever balls are
in the urn, the probability of nonextinction is shown to be positive. On the event of nonextinction,
three results are proven: (i) the number of balls increases asymptotically at a linear rate, (ii) the
distribution x(n) of strategies at the nth update is a “noisy” Cauchy–Euler approximation to the
mean limit ODE of the process, and (iii) the limit set of x(n) is almost surely a connected internally
chain recurrent set for the mean limit ODE. Under a stronger set of assumptions, it is shown that
for any attractor of the mean limit ODE there is a positive probability that the limit set for x(n)
lies in this attractor. Theoretical and numerical estimates for the probabilities of nonextinction and
convergence to an attractor suggest that random genetic drift is more likely to overcome natural
selection in small populations for which pairwise interactions lead to highly variable outcomes, and
is less likely to overcome natural selection in large populations with the potential for rapid growth.
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1. Introduction. A successful approach to the study of the Darwinian process
of natural selection has been evolutionary game theory, whose starting point can be
traced back to the seminal work of Maynard Smith [17, 18, 20]. Recent accounts about
the progress in this field exist in books by Weibull [27] and Hofbauer and Sigmund [15].
Unlike noncooperative game theory in which [27] “a game is played exactly once
by fully rational players who know all the details of the game. . . evolutionary game
theory. . . imagines that the game is played over and over again by biologically or
socially conditioned players who are randomly drawn from large populations. More
specifically, each player is ‘pre-programmed’ to some behavior—formally a strategy
of the game—and one assumes that some evolutionary selection process operates over
time on the population distribution of behaviors.” Under the assumptions of an
infinite randomly mixing population with overlapping generations whose individuals
engage in pairwise contests and reproduce asexually without mutations (i.e., “like
begets like”) one arrives at the replicator equations [15]

dxi
dt

= xi


 k∑

j=1

Aijxj −
k∑

j,l=1

Ajlxjxl


 , i = 1, . . . , k,(1.1)
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URN MODELS AND RANDOM GENETIC DRIFT 2149

where xi is the proportion of the population playing the strategy i and Aij is the payoff
to an individual playing strategy i following an encounter with an individual playing
strategy j. Under these assumptions, the terms

∑k
j=1 Aijxj and

∑k
j,l=1 Ajlxjxl rep-

resent the expected payoff to an individual playing strategy i and the expected payoff
for the entire population, respectively.

While this modeling approach has lead to many important insights, the underlying
assumption of an “infinite population” ignores the role of chance at the population
level. In the words of Maynard Smith [19]:

The basic problem is as follows. In an infinite population, if one
can imagine such a thing, natural selection would always determine
which of two types would be established and which eliminated. But
real populations are finite, and for a finite population it is quite
possible for the fitter of two types to be eliminated and the less fit
to be established provided that fitness differences are small. Such
random changes not produced by selection and sometimes contrary
to selection are referred to as “genetic drift.” There is no question
that drift will occur, but deep disagreement about its importance.

Since the founding work of Fisher [12] and Wright [28], the effect of finite population
sizes has been studied extensively when the population size is assumed to remain
constant [10, 11, 16, 21]. These studies involve Markov chains on a finite state space
whose states represent the distribution of strategies (or genotypes) in the population.
If the individuals replicate asexually without mutations, then states of the Markov
chain corresponding to all individuals playing the same strategy are absorbing. Con-
sequently, all individuals in the population typically fixate on a common strategy
after a finite number of updates of the process. For this reason, the analysis of these
Markov chain models have focused on mathematically more delicate questions such
as the expected time to fixation, the probability of fixating on a particular strategy,
and approximations thereof.

In contrast to these studies, our interest lies in understanding the evolutionary
behavior of finite populations with the potential for growth. With this objective in
mind, we study in section 2 the asymptotic behavior of generalized Polya urns: a
Markov chain whose state space is the nonnegative cone of the integer lattice and
whose states represent the distribution and number of colored balls in an urn. The
relevance of these models to evolutionary processes is readily apparent if we view
a ball as an individual and its color as the individual’s strategy. In the case when
new balls are added to the urn at a constant rate, generalized Polya urns have been
studied extensively [1, 3, 4, 6, 13, 22, 24]. However, since the number of progeny
produced by an individual may vary and individuals may die, we study generalized
Polya urns where balls may be removed as well as added at varying rates. For these
generalized Polya urns we prove three results. First, on the event of nonextinction, the
distribution x(n) of colors (strategies) at update n can be viewed as a “noisy” Cauchy–
Euler approximation to a “mean limit” ordinary differential equation (ODE) on the
simplex (i.e., the space of all possible distributions of the strategies) where the step size
of the approximation is inversely proportional to the population size. Second, on the
event that the total number of balls grows asymptotically at a linear rate, the limit set
for x(n) is almost surely an invariant, compact, connected, internally chain recurrent
set for the mean limit ODE. This linear growth assumption corresponds to exponential
population growth with respect to the natural time scale of the process. Since the
chain recurrent set is a well-studied set in dynamics [8], this result significantly narrows
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2150 SEBASTIAN J. SCHREIBER

down the possibilities for the limiting behavior of the stochastic process. Third, under
the stronger assumption that more balls are being added than removed at every update
of the process, we provide a condition that ensures that the limit set of x(n) is with
positive probability contained in an attractor of the mean limit ODE.

In section 3, we formulate a generalized Polya urn that we call the replicator pro-
cess. In this process two balls are selected at random with replacement and new balls
are added or removed according to probabilities that depend only on the colors of the
chosen balls. Biologically, the random selection of the balls corresponds to pairwise
interactions between individuals, the addition of balls corresponds to replication of
an individual, and the removal of balls to the death of individuals. The mean limit
ODE for this process is a replicator equation (1.1). We show that if the population
expects to exhibit growth whenever individuals are present, then with positive prob-
ability the population grows at an exponential rate with respect to the natural time
scale of the process. Hence, the first result of section 2 implies that on the event of
nonextinction the limit set of the distribution x(n) of strategies is almost surely a
connected internally chain recurrent set for the mean limit ODE. Under the stronger
assumptions that the population is constantly growing and any strategy present in
the population replicates with positive probability, the second result of section 2 is
shown to imply that the limit set of x(n) is contained with positive probability in any
attractor of the mean limit ODE. We illustrate the results with a stochastic analog of
the evolutionary game of rock-scissors-paper [18, 26].

We conclude in section 4 by discussing the relevance of our results to the roles of
random genetic drift and natural selection in the evolutionary process.

2. Generalized Polya urns. In this section we develop tools to analyze a class
of generalized Polya urns. We follow the approach of Benäım and Hirsch [2, 3, 4, 6]
for studying processes of this type. These models involve an urn that contains balls
of up to k different colors. At discrete time intervals, anywhere between 0 to m balls
are added or removed according to probabilities that depend only on the number of
balls and their distribution at that point in time.

Let Z
k denote the space of k-tuples of integers. Given a vector w ∈ R

k define

|w| = |w1|+ · · ·+ |wk| and α(w) = w1 + · · ·+ wk.

To avoid confusing the L1 norm | · | with the Euclidean norm, we shall always write
‖·‖ for the Euclidean norm on R

k. Let Z
k
+ denote the space of k-tuples of nonnegative

integers and R
k
+ = {x ∈ R

k : x1 ≥ 0, . . . , xk ≥ 0} denote the nonnegative cone of R
k.

Let ∆k−1 ⊂ R
k denote the k − 1 simplex, i.e.,

∆k−1 =
{
x ∈ R

k
+ :

∑
xi = 1

}
.

We say a Markov process z(n) = (z1(n), . . . , zk(n)) ∈ Z
k
+, where zi(n) is the number

of balls of color i, at time step n is a generalized Polya urn provided that
(A1) There exists a positive integer m such that |z(n + 1) − z(n)| ≤ m for
all n.
(A2) There exists a map F : Z+ ×∆k−1 → R

k such that

F (|z(n)|, z(n)/|z(n)|) = E[z(n+ 1)− z(n)|z(n)]
whenever z(n) 
= 0.
(A3) There exists a Lipschitz map f : ∆k−1 → R

k such that F (N, ·) converges
uniformly to f(·) as N → ∞.
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URN MODELS AND RANDOM GENETIC DRIFT 2151

To study the long-term behavior of these generalized Polya urns z(n), it is useful
to relate its dynamics to an appropriately chosen ODE. To this end, we define

x(n) =

{
z(n)
|z(n)| if z(n) 
= 0,

0 if z(n) = 0,
(2.1)

and prove the following lemma which expresses x(n) as a stochastic algorithm.
Lemma 2.1. Let z(n) be a generalized Polya urn and Fn be the σ-algebra gener-

ated by z(1), . . . , z(n). Define G : Z+ ×∆k−1 → R
k and g : ∆k−1 → R

k by

G(N,x) = F (N,x)− xα(F (N,x)), g(x) = f(x)− xα(f(x)).(2.2)

Then for all z(n) 
= 0,

x(n+ 1)− x(n) =
1

|z(n)| (g(x(n)) + U(n+ 1) + b(n+ 1)) ,(2.3)

where U(n) and b(n) are random variables adapted to Fn satisfying
(i) E[U(n+ 1)|z(n)] = E[U(n+ 1)|Fn] = 0,
(ii) ‖U(n)‖ ≤ 4m(m+ 1), and

(iii) ‖b(n+ 1)‖ ≤ 2m2

|z(n)| + ‖G(|z(n)|, x(n))− g(x(n))‖ whenever |z(n)| > m.

Proof. Define the random variables

U(n+ 1) = (x(n+ 1)− x(n)− E[x(n+ 1)− x(n)|z(n)])|z(n)|,
b(n+ 1) = |z(n)|E[x(n+ 1)− x(n)|z(n)]− g(x(n)).

From these definitions and the fact that z(n) is a Markov chain, it follows that Un

and bn are adapted to Fn, E[U(n+ 1)|z(n)] = E[U(n+ 1)|Fn] = 0, and (2.3) is valid
whenever z(n) 
= 0.

For the remainder of the proof, we write z = z(n) and x = x(n). To prove (ii),
notice that if z(n+ 1) 
= 0, then

‖(x(n+ 1)− x)|z|‖ =

∥∥∥∥z(n+ 1)|z| − z|z(n+ 1)|
|z(n+ 1)|

∥∥∥∥(2.4)

≤
∥∥∥∥z(n+ 1)|z| − z|z|

|z(n+ 1)|
∥∥∥∥+

∥∥∥∥z|z| − z|z(n+ 1)|
|z(n+ 1)|

∥∥∥∥
≤ m

( |z|
|z(n+ 1)| +

‖z‖
|z(n+ 1)|

)
≤ 2m(m+ 1),

where the last two lines follow from the fact that no more than m balls are being
added or removed at any update. Alternatively if z(n+ 1) = 0, then it must be that
|z(n)| ≤ m since no more than m balls can be removed at a single update. In which
case, x(n + 1) = 0 and ‖(x(n + 1) − x(n))|z(n)|‖ = ‖z(n)‖ ≤ m. Thus, we get that
‖U(n+ 1)‖ ≤ 4m(m+ 1).

To prove (iii), notice that if z 
= 0 and z(n+1)−z = w, then |z(n+1)| = |z|+α(w).
Consequently,

(x(n+ 1)− x)|z| =
{

|z|(w−α(w)x)
|z|+α(w) if w 
= −z,

−z if w = −z.
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2152 SEBASTIAN J. SCHREIBER

Therefore, for z 
= 0

|z|E[x(n+ 1)− x|z(n) = z] =
∑

w �=−z

|z|(w − α(w)x)

|z|+ α(w)
P [z(n+ 1)− z = w|z(n) = z]

−zP [z(n+ 1) = 0|z(n) = z].(2.5)

Notice that P [z(n + 1) = 0|z(n) = z] > 0 only when |z| ≤ m. Assume that |z| > m.
Under this assumption, (2.2) and (2.5) and assumption (A2) imply

‖b(n+ 1)‖ =

∥∥∥∥∥
∑
w

|z|
|z|+ α(w)

P [z(n+ 1)− z = w|z(n) = z](w − α(w)x)− g(x)

∥∥∥∥∥
≤

∥∥∥∥∥
∑
w

|z|
|z|+ α(w)

P [z(n+ 1)− z = w|z(n) = z](w − α(w)x)−G(|z|, x)
∥∥∥∥∥

+‖G(|z|, x)− g(x)‖

=

∥∥∥∥∥
∑
w

( |z|
|z|+ α(w)

− 1

)
P [z(n+ 1)− z = w|z(n) = z](w − α(w)x)

∥∥∥∥∥
+‖G(|z|, x)− g(x)‖

≤ m

|z| ‖E[z(n+ 1)− z − α(z(n+ 1)− z)x|z(n) = z]‖+ ‖G(|z|, x)− g(x)‖

≤ 2m2

|z| + ‖G(|z|, x)− g(x)‖,

where the third line follows from the definition of G and the linearity of α(·).
Equation (2.3) can be considered to be a “noisy” Cauchy–Euler approximation

scheme for the mean limit ODE

dx

dt
= f(x)− xα(f(x)).(2.6)

In particular, whenever z(n) 
= 0 we can view 1
|z(n)| as the step size of the Cauchy–

Euler approximation, U(n + 1) as an unbiased noise, and b(n + 1) as an additional
(possibly biased) noise that goes to zero. On the event {limn→∞ |z(n)| = ∞}, the step
size of the approximation is decreasing and it is natural to compare the sample paths

of x(n) = z(n)
|z(n)| with the flow of (2.6). To this end, we rescale time. Let τ(0) = 0 and

for n ≥ 0 define

τ(n+ 1) =

{
τ(n) + 1

|z(n)| if z(n) 
= 0,

τ(n) + 1 if z(n) = 0.

We view τ(n) as representing the amount of time that has elapsed when the generalized
Polya urn has been updated n times. This rescaling gives the natural time scale of the
process as in a population of |z(n)| individuals, we expect the number of interactions
occurring in an interval of time to be proportional to |z(n)|. Notice that assumption

(A1) implies that τ(n) ≥ ∑n−1
i=0

1
|z(0)|+mi . Therefore, limn→∞ τ(n) = ∞.

Using this new time scale, we define a continuous-time version of x(n), namely,
the piecewise constant interpolation X : R+ → ∆k−1 defined by

X(t) = x(n), t ∈ [τ(n), τ(n+ 1)).(2.7)
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URN MODELS AND RANDOM GENETIC DRIFT 2153

X(t) is the urn distribution at time t and is constant between updates of the urn.

Prior to stating the main result of this section, we recall a few definitions from
dynamical systems theory. Let φ : R ×∆k−1 → ∆k−1 denote the flow of (2.6). Let
φt(x) = φ(t, x). A set K ⊆ R

k is said to be invariant if for all t ∈ R, φt(K) = K.
A point x ∈ R

k is said to be chain-recurrent provided that for all T > 0 and ε > 0
there exists points y(1), . . . , y(n) and times t1, . . . , tn−1 greater than T such that
y(1) = y(n) = x and ‖y(i + 1) − φ(ti, y(i))‖ < ε for all 1 ≤ i ≤ n − 1. A subset K
is said to be internally chain-recurrent if K is a nonempty compact invariant set of
which every point is chain-recurrent for the restricted flow φ|K. The chain recurrent
set was introduced by Conley [8] and is an extremely well-behaved set as it does not
“explode” under small perturbations of the differential equation. Given a sequence
{w(n)}n≥0 in R

k, the limit set L({w(n)}n≥0) of the sequence is the set of x ∈ R
k

such that limi→∞ w(ni) = x for some sequence ni ↑ ∞. Similarly, given a function
W : R+ → R

k, the limit set L(W ) of W is the set of points x ∈ R
k such that

limn→∞W (tn) for some sequence tn ↑ ∞.

Theorem 2.2. Let z(n) be a generalized Polya urn. Let φ be the flow of the mean
limit ODE, x(n) be the distribution of balls at update n as defined in (2.1), and X(t) be

the piecewise constant interpolation defined by (2.7). On the event {lim infn→∞
z(n)
n >

0},
1. X(t) is almost surely an asymptotic pseudotrajectory for φ: in other words,
for any T > 0

lim
t→∞ sup

0≤h≤T
‖X(t+ h)− φh(X(t))‖ = 0;

2. L(X) = L({x(n)}n≥0) is almost surely a connected compact internally chain
recurrent set for φ.

Remark. The assertions of Theorem 2.2 hold more generally on the event

{
lim inf
n→∞

|z(n)|
nα

> 0 for some α > 1/2

}
.

However, since for the generalized Polya urns of interest the event of nonextinction
and the event of linear growth are almost surely the same (see, e.g., Theorem 3.1),
we restrict ourselves to linear growth.

The assumption of linear growth with respect to updates in Theorem 2.2 implies

exponential growth with respect to the natural time scale as lim infn→∞
|z(n)|

n = α

implies lim infn→∞
log(|z(n)|)

τ(n) = α. The first assertion of Theorem 2.2 can be thought

of as follows: On finite time intervals far into the future the interpolated process
X(t) tracks the flow φt with arbitrarily small error. The notion of an asymptotic
pseudotrajectory was introduced by Benäım and Hirsch [6] and studied in the context
of stochastic algorithms by Benäım [2].

Prior to proving Theorem 2.2, we discuss one of its corollaries. Further corollaries
follow in the spirit of Benäım and Hirsch [3, 6]. Using Theorem 2.2 it is possible to
give a complete description of the candidate limit sets for x(n) when z(n) is an urn
process involving balls of two or three colors. To this end, recall that for a flow φt on
∆k−1, the α-limit set of a point x ∈ ∆k−1 equals the set of points y ∈ ∆k−1 such that
φtkx → y for some sequence of times tk → −∞. The ω-limit set of a point x ∈ ∆k−1

equals the set of points y ∈ ∆k−1 such that φtkx → y for some sequence of times
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2154 SEBASTIAN J. SCHREIBER

tk → ∞. A cycle of equilibria for φ is a union

n⋃
j=1

({ej} ∪ γj)

consisting of equilibria ej and connecting orbits γj such that the α-limit set of γj =
ej−1 and the ω-limit set of γj = ej for all j = 1, . . . , n with the convention that
e0 = en. An equilibrium x for φ is called isolated if there is an open neighborhood
of x that contains no other equilibria. Benäım and Hirsch [5] proved the following
characterization of compact connected internally chain recurrent sets for planar flows.

Theorem 2.3 (see [5]). Let φ be a flow on a open subset U of R
2 with isolated

equilibria and L ⊆ U be a connected compact internally chain-recurrent set for φ.
Then L is a connected union of equilibria, periodic orbits, and cycles of equilibria.

Combining Theorems 2.2 and 2.3, we get the following corollary.

Corollary 2.4. Suppose z(n) is a generalized Polya urn with k = 3. As-
sume that the equilibria of the mean limit ODE are isolated. Then on the event
{limn→∞ |z(n)|/n > 0}, the limit set of x(n) = z(n)/|z(n)| almost surely is a con-
nected union of equilibria, periodic orbits, and cycles of equilibria of the mean limit
ODE.

Proof of Theorem 2.2.We need to invoke Theorem 1.2 and Lemma 4.2 of [2] about
deterministic difference equations. We restate these results as follows.

Theorem 2.5 (see [2]). Let g : R
k → R

k be a Lipschitz vector field and let
{x(n)}n≥0 be a solution to the recursion

x(n+ 1)− x(n) = γ(n+ 1) (g(x(n)) + U(n+ 1) + b(n+ 1)) ,

where γ(n), U(n), and b(n) are sequences such that

(i) limn→∞ γ(n) = 0 and
∑

n≥0 γ(n) = ∞,
(ii) limn→∞ b(n) = 0,
(iii) {x(n)}n≥0 is bounded, and
(iv) for all T > 0,

lim
n→∞ sup

{∥∥∥∥∥
l−1∑
i=n

γ(i)U(i)

∥∥∥∥∥ : 0 ≤ τ(l)− τ(n) ≤ T

}
= 0,

where τ(n) = γ(1) + · · ·+ γ(n).

Then

(a) L({x(n)}n≥0) is a connected, compact, internally chain-recurrent set for the
flow generated by ẋ = g(x);

(b) the interpolated process X̄ defined by

X̄(t) = x(n) +
t− τ(n)

γ(n+ 1)
(x(n+ 1)− x(n)), t ∈ [τ(n), τ(n+ 1)),

is an asymptotic pseudotrajectory for the flow φt generated by ẋ = g(x), i.e.,
for all T > 0

lim
t→∞ sup

0≤h≤T
‖X̄(t+ h)− φh(X̄(t))‖ = 0.(2.8)
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To employ Theorem 2.5, we set

g(x) = f(x)− xα(f(x))

and

γ(n+ 1) =

{ 1
|z(n)| if z(n) 
= 0,

1 if z(n) = 0.

Let U(n) and b(n) as defined in Lemma 2.1. We need to verify that these three
sequences of random variables satisfy assumptions (i)–(iv) of Theorem 2.5 almost

surely on the event G = {lim infn→∞
|z(n)|

n > 0}. Assumption (A1) implies that
assumption (i) of Theorem 2.5 holds on the event G. Assumption (A3) and assertion
(iii) of Lemma 2.1 imply that assumption (ii) of Theorem 2.5 holds on the event G.
Assumption (iii) of Theorem 2.5 follows from the fact that x(n) either equals 0 or lies
in ∆k−1. To verify assumption (iv) of Theorem 2.5, we define

M(n) =

n∑
i=1

γ(i)U(i)

and Fn to be the σ-algebra generated by z(1), . . . , z(n). To prove that assumption
(iv) of Theorem 2.5 holds almost surely on the event G, it suffices to show that M(n)
converges almost surely on the event G. Since E[U(n+1)|Fn] = 0 and γ(n+1) ∈ Fn,
M(n) is a martingale. Given l ∈ Z+, define the stopping time

Tl = inf

{
n :

n∑
i=1

γ(i)2 > l

}
.

By orthogonality of the increments of M(n ∧ Tl),

E[M(n ∧ Tl)
2] = E

[
n∧Tl∑
i=1

γ(i)2U(i)2

]

≤ 16m2(m+ 1)2E

[
n∧Tl∑
i=1

γ(i)2

]
≤ 16m2(m+ 1)2(l + 1),

where the second line follows from assertion (ii) of Lemma 2.1 and the definition of
Tl. Therefore by Doob’s L2 convergence theorem, M(n ∧ Tl) converges almost surely
to a limit Xl. Since M(n ∧ Tl) = M(n) on the event Gl = {∑n

i=1 γ(i)
2 ≤ l for all n}

and G ⊆ ⋃∞
l=1 Gl, M(n) converges almost surely on the event G.

To finish the proof of the theorem, we translate Theorem 2.5’s statement about
the piecewise affine process X̄(t) to a statement about the piecewise constant process
X(t). To this end, given t ≥ 0 define c = c(t) = sup{n : t ≥ τ(n)}. Notice that
X(t) = x(c) = X̄(τ(c)). If z(c+ 1) 
= 0, then (2.4) implies that

‖X(t)− X̄(t)‖ = ‖(t− τ(c))|z(c)|(x(c+ 1)− x(c))‖(2.9)

≤ (t− τ(c))2m(m+ 1)

≤ 2m(m+ 1)

|z(c)| .
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2156 SEBASTIAN J. SCHREIBER

Since for any h > 0

‖X(t+ h)− φh(X(t))‖ ≤ ‖X(t+ h)− X̄(t+ h)‖+ ‖X̄(t+ h)− φh(X̄(t))‖
+‖φh(X̄(t))− φh(X(t))‖

(2.9) implies that on the event G, X(t) is an asymptotic pseudotrajectory whenever
X̄(t) is an asymptotic pseudotrajectory.

A question arising from Theorem 2.2 is, To what internally chain-recurrent sets
of the mean limit flow φ does x(n) converge with positive probability? A natural
candidate is an attractor for the mean limit flow. For a compact set K ⊂ R

k−1 and
point in x ∈ R

k−1 define dist(x,K) = miny∈K ‖x−y‖. Recall that a compact invariant
set A ⊆ ∆k−1 is called an attractor for φ if there exists an open neighborhood U of
A such that dist(φtx,A) → 0 as t → ∞ uniformly in x ∈ U . The basin of attraction
B(A) of A is the positively invariant open set consisting of all points x such that
dist(φtx,A) → 0 as t → ∞. Benäım [3, sect. 7] provides a useful approach to this
question via the notion of attainability. If z(n) is a generalized Polya urn and X(t)
is the piecewise constant process defined by (2.7), then a point x ∈ ∆k−1 is called
attainable if P [∃s ≥ t : X(s) ∈ U ] > 0 for each t ∈ R+ and every open neighborhood
U of x. Let Att(X) denote the set of attainable points.

Theorem 2.6. Let z(n) be a generalized Polya urn and X(t) be the piecewise
constant process defined by (2.7). Assume that there exist a, β > 0 such that P [|z(n)| ≥
an for all n ≥ 0] = 1 and

‖F (N,x)− xα(F (N,x))− f(x) + xα(f(x))‖ ≤ β

N
(2.10)

for all N ≥ 1. Let A be an attractor for the mean limit ODE with basin of attraction
B(A). If U ⊆ ∆k−1 is an open set such that U ⊂ B(A), then there exists a K > 0
such that for all z(0) 
= 0 and t ∈ R+

P [L(X) ⊆ A] ≥
(
1− K

|z(0)| exp(a t)
)
P [∃s ≥ t such that X(s) ∈ U ].

In particular, if B(A) ∩Att(X) 
= ∅, then P [L(X) ⊆ A] > 0.
Proof. Let z(n) be an urn process satisfying (A1)–(A3). Assume there is an

a > 0 such that |z(n)| ≥ an almost surely and β > 0 such that (2.10) holds. Let
x(n) = z(n)/|z(n)| and X(t) be the process defined by (2.7). Define c(t) = sup{n ∈
Z+ : t ≥ τ(n)} and Ft as the σ-algebra generated by z(1), . . . , z(c(t)).

The next lemma is a straightforward adaptation of a theorem due to Benäım [3,
Thm. 7.3] but for the reader’s convenience we supply a proof.

Lemma 2.7 (adapted from [3]). Assume there exists w : R
3
+ → R+ such that

P

[
sup
n≥1

‖X(t+ nT )− φTX(t+ (n− 1)T )‖ ≥ δ|Ft

]
≤ w(t, T, δ)

and for all T > 0 and δ > 0, w(t, T, δ) ↓ 0 as t ↑ ∞. If U ⊆ ∆k−1 is an open set such
that U ⊂ B(A), then there exists T > 0 and δ > 0 (depending on U) such that for all
t ∈ R+

P [L(X) ⊆ A] ≥ (1− w(t, T, δ))P [∃s ≥ t such that X(s) ∈ U ].

Proof of Lemma 2.7. Pick δ > 0 such that N(A, 2δ) = {x ∈ ∆k−1 : dist(x,A) ≤
2δ} is contained in B(A). Since A is an attractor and W = N(A, 2δ)∪U is contained
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in its basin, there is a T > 0 such that φT (W ) ⊂ N(A, δ). Suppose that X(t)
is a sample path such that L({X(t)}t≥0) is an internally chain recurrent set for φ,
X(s) ∈ U for some s ∈ R+ , and

sup
n≥1

‖X(s+ nT )− φTX(s+ (n− 1)T )‖ ≤ δ.(2.11)

We will show for this sample path that L({X(t)}t≥0) ⊆ A. Since X(s) ∈ U , our
choice of T implies that φTX(s) ∈ N(A, δ). Equation (2.11) implies that X(s+ T ) ∈
N(A, 2δ). Proceeding inductively, we get that X(s + nT ) ∈ N(A, 2δ) for all n ≥ 1.
Hence, for this sample path, L({X(t)}t≥0) ∩ B(A) 
= ∅. Since L({X(t)}t≥0) is an
internally chain recurrent set for φ, a standard result about chain recurrence (see,
e.g., [3, Cor. 5.4]) implies that L({X(t)}t≥0) ⊆ A.

Given t0 ∈ R+, define S = inf{s ≥ t0 : X(s) ∈ U}. Since Theorem 2.2 implies
that L({X(t)}t≥0) is almost surely an internally chain recurrent set for φ, we have
just shown that the following inclusion of events holds:

{S < +∞} ∩
{
sup
n≥1

‖X(S + nT )− φTX(S + (n− 1)T )‖ ≤ δ

}
⊆ {L(X) ⊆ A}.

Since {S < +∞} = {S = t0} ∪ (
⋃

i>c(t0)
{S = τ(i)}), it follows that

P [L(X) ⊆ A] ≥ E

[
P

[
sup
n≥1

‖X(t0 + nT )− φTX(t0 + (n− 1)T )‖ ≤ δ|Ft0

]
1{S=t0}

]

+
∑

i>c(t0)

E

[
P

[
sup
n≥1

‖X(τ(i) + nT )− φTX(τ(i) + (n− 1)T )‖

≤ δ|Fτ(i)

]
1{S=τ(i)}

]

≥ (1− w(t0, T, δ))P [∃s ≥ t0 such that X(s) ∈ U ].

To prove Theorem 2.6 we need to find a function w(t, T, δ) that satisfies the
hypotheses of Lemma 2.7. To this end, let g(x) = f(x) − α(f(x))x, where f(x) is
given by (A3), L > 0 be the Lipschitz constant for g, ‖g‖0 = supx∈∆k−1 ‖g(x)‖, φt

denote the flow of g, and U(n + 1) and b(n + 1) be as in Lemma 2.1. We begin by
proving the following inequality for any t > 0 and T > 0:

‖φT (X(t))−X(t+ T )‖ ≤ eLT (Γ1(t, T ) + Γ2(t, T ) + Γ3(t, T )) ,(2.12)

where

Γ1(t, T ) = sup
c(t)≤l≤c(t+T )

2‖g‖0

|z(l)| ,

Γ2(t, T ) = sup
c(t)≤l≤c(t+T )−1

∥∥∥∥∥∥
l∑

i=c(t)

b(i+ 1)

|z(i)|

∥∥∥∥∥∥ ,
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2158 SEBASTIAN J. SCHREIBER

and

Γ3(t, T ) = sup
c(t)≤l≤c(t+T )−1

∥∥∥∥∥∥
l∑

i=c(t)

U(i+ 1)

|z(i)|

∥∥∥∥∥∥ .
To prove (2.12), notice that for any h ≥ 0

X(t+ h)−X(t) = x(c(t+ h))− x(c(t)) =

c(t+h)−1∑
i=c(t)

x(i+ 1)− x(i)

=

c(t+h)−1∑
i=c(t)

g(x(i)) + U(i+ 1) + b(i+ 1)

|z(i)|

=

∫ τ(c(t+h))

τ(c(t))

g(X(s)) ds+

c(t+h)−1∑
i=c(t)

U(i+ 1) + b(i+ 1)

|z(i)|

=

∫ τ(c(t+h))−t

τ(c(t))−t

g(X(t+ s)) ds+

c(t+h)−1∑
i=c(t)

U(i+ 1) + b(i+ 1)

|z(i)| .

Since φhX(t) = X(t) +
∫ h

0
g(φsX(t)) ds, the previous equalities imply that

‖φh(X(t))−X(t+ h)‖ ≤
∫ h

0

‖g(φs(X(t))− g(X(t+ s))‖ds

+

∫ 0

τ(c(t))−t

‖g(X(t+ s))‖ds

+

∫ h

τ(c(t+h))−t

‖g(X(t+ s))‖ds

+

∥∥∥∥∥∥
c(t+h)−1∑
i=c(t)

U(i+ 1) + b(i+ 1)

|z(i)|

∥∥∥∥∥∥
≤ L

∫ h

0

‖φs(X(t))−X(t+ s)‖ds+ ‖g‖0

|z(c(t))|

+
‖g‖0

|z(c(t+ h))| +
∥∥∥∥∥∥
c(t+h)−1∑
i=c(t)

U(i+ 1) + b(i+ 1)

|z(i)|

∥∥∥∥∥∥ .
Applying Gronwall’s inequality (see, e.g., [23]) to the previous inequality over the
interval 0 ≤ h ≤ T gives us (2.12).

Next, we find upper bounds on Γ1(t, T ), Γ2(t, T ), and P [supn≥0 Γ3(t+ nT, T ) ≥
δ|Ft]. Our assumption that |z(n)| ≥ an and the definition of c(t) imply that

t ≤
c(t)∑
n=0

1

|z(0)|+ an
≤ 1

|z(0)| +
∫ c(t)

0

dx

|z(0)|+ a x
.

Consequently,

|z(0)|+ a c(t) ≥ |z(0)| exp(a(t− 1)).(2.13)
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The definition of Γ1(t, T ) and (2.13) imply that

Γ1(t, T ) ≤ 2‖g‖0

|z(0)|+ a c(t)
≤ 2‖g‖0

|z(0)| exp(a(t− 1))
.(2.14)

Assertion (iii) of Lemma 2.1, (2.10), and (2.13) imply that for |z(0)|+ a c(t) ≥ m,

Γ2(t, T ) ≤
∞∑

i=c(t)

|b(i+ 1)|
|z(i)| ≤

∞∑
i=c(t)

2m2 + β

(|z(0)|+ a i)2
(2.15)

≤
∫ ∞

c(t)−1

2m2 + β

(|z(0)|+ a x)2
dx ≤ 4m2 + 2β

a|z(0)| exp(a(t− 1))
.

The definition of Γ3, Doob’s inequality, assertion (ii) of Lemma 2.1, and (2.13)
imply that for any δ > 0, t ≥ 0, and T > 0

P

[
sup
n≥0

Γ3(t+ nT, T ) ≥ δ|Ft

]
≤

∑
n≥0

P [Γ3(t+ nT, T ) ≥ δ|Ft](2.16)

≤ 16m2(m+ 1)2

δ2

∞∑
i=c(t)

1

|z(i)|2

≤ 16m2(m+ 1)2

δ2

∫ ∞

c(t)−1

dx

(|z(0)|+ a x)2

≤ 32m2(m+ 1)2

aδ2|z(0)| exp(a(t− 1))
.

Equations (2.14)–(2.16) imply that for any T > 0, and δ > 0, there exists a
K0(δ, T ) > 0 such that for all t ≥ 0 and z(0) 
= 0,

sup
n≥0

eLT (Γ1(t+ nT, T ) + Γ2(t+ nT, T )) ≤ K0(δ, T )

|z(0)| exp(a t)(2.17)

and

P

[
sup
n≥0

eLTΓ3(t+ nT, T ) ≥ δ/3|Ft

]
≤ K0(δ, T )

|z(0)| exp(a t) .(2.18)

These upper bounds and (2.12) imply that if |z(0)| exp(a t) ≥ 3K0(δ, T )/δ, then

P

[
sup
n≥1

‖X(t+ nT )− φTX(t+ (n− 1)T )‖≥ δ|Ft

]
≤ P

[
sup
n≥0

eLTΓ3(t+ nT, T )≥ δ/3|Ft

]

≤ K0(δ, T )

|z(0)| exp(a t) .

Define K(δ, T ) = max{K0(δ, T ), 3K0(δ, T )/δ}. Since K(δ,T )
|z(0)| exp(a t) ≥ 1 whenever

|z(0)| exp(a t) ≤ 3K0(δ, T )/δ, we get that

P

[
sup
n≥1

‖X(t+ nT )− φTX(t+ (n− 1)T )‖ ≥ δ|Ft

]
≤ K(δ, T )

|z(0)| exp(a t)
for all t ∈ R+. Setting w(t, T, δ) = K(δ,T )

|z(0)| exp(a t) and applying Lemma 2.7 completes

the proof of the first assertion of Theorem 2.6. To prove the second assertion, it
suffices to pick an attainable point p ∈ B(A), pick an open neighborhood U of p such
that U ⊂ B(A), and apply the first assertion of the theorem.
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3. Replicator processes. We consider a system consisting of a finite population
of individuals playing k different strategies. At each update of the population, pairs
of individuals are chosen randomly with replacement from the population. These
chosen individuals replicate and die according to probabilities that depend only on
the strategies of the chosen individuals. More precisely, let m be a nonnegative
integer that represents the maximum number of progeny that any individual can
produce in one update. Let {R(n)}n≥0 and {R̃(n)}n≥0 be sequences of independent
identically distributed random k × k matrices whose entries take values in the set
{−1, 0, 1, . . . ,m}. Let {r(n)}n≥0 be a sequence of independent identically distributed
random k×1 matrices whose entries take values in the set {−1, 0, 1, . . . ,m}. Define a
replicator process with respect to R(n), R̃(n), and r(n) to be a Markov chain z(n) ∈ Z

k
+

which is updated at time step n according to the following rules:
1. If there are no balls (i.e., individuals) in the urn (i.e., the population), then

the process stops else choose two balls at random with replacement from the
urn.

2. If the same ball is chosen twice and it is of color i (i.e., strategy i), then add
ri(n) balls of color i.

3. If two different balls are chosen, say the first ball has color i and the second
ball has color j, then add Rij(n) balls of color i and add R̃ji(n) balls of color
j.

Under these assumptions, z(n) is a generalized Polya urn where no more than 2m balls
are added or removed at any update, the function F (N,x) = (F1(N,x), . . . , Fk(N,x))
described in (A2) is given by

Fi(N,x) =
xi(xiN − 1)

N
E[Rii(0) + R̃ii(0)](3.1)

+
xi
N
E[ri(0)]

+xi
∑
j �=i

xjE[Rij(0) + R̃ij(0)],

and the limiting function f(x) = (f1(x), . . . , fk(x)) alluded to in (A3) is given by

fi(x) = xi

k∑
j=1

xjE[Rij(0) + R̃ij(0)].(3.2)

Therefore, the mean limit ODE for the replicator process is a mean limit replicator
equation:

ẋi = xi

k∑
j=1

xjE[Rij(0) + R̃ij(0)](3.3)

−xi
k∑

j,l=1

xjxlE[Rjl(0) + R̃jl(0)],

i = 1, . . . , k,

with payoff E[R(0) + R̃(0)]. Notice that E[r(0)] does not appear in (3.3). This
corresponds to the fact that as the population grows in size, encounters between
different individuals become more likely.
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In order to apply Theorem 2.2, we need to find conditions that ensure that the
number of balls grows asymptotically at a linear rate with positive probability.

Theorem 3.1. Let z(n) be a replicator process. Define

a = min
i,j

{E[Rij(0) + R̃ji(0)], E[ri(0)]}.(3.4)

If a > 0, then
(i) there is a δ > 0 such that for all z(0)

P [z(n) 
= 0 for all n ≥ 0] ≥ 1− e−|z(0)|δ,

(ii) on the event {z(n) 
= 0 for all n}, z(n) almost surely satisfies

lim inf
n→∞

|z(n)|
n

≥ a.

Theorems 2.2 and 3.1 imply the following corollary.
Corollary 3.2. Let z(n) be a replicator process and X(t) be defined by (2.7).

Assume that a as defined in (3.4) is strictly positive. Then on the event {z(n) 
= 0 for
all n}, the limit set of X(t) is almost surely a connected internally chain recurrent set
for the mean limit replicator equation.

Before proving Theorem 3.1, it is worth noting that even with the restriction
a > 0 it is possible to realize all replicator dynamics as a mean limit of a replicator
process. More specifically, let A be an arbitrary k×k matrix and consider the change
of payoff, given by λA+ b, where λ, b ∈ R. Under this change of payoff, the replicator
equation in (1.1) becomes

ẋi = λxi


∑

j

Aijxj −
∑
j,l

Ajlxjxl


 .(3.5)

If λ > 0, then the dynamics of (1.1) and (3.5) are equivalent up to a rescaling of time.
Hence, there are many choices of the random matrices R(0), R̃(0), and r(0) such that
(3.3) realizes the dynamics of (1.1) up to a rescaling of time.

Proof of Theorem 3.1. To prove (i), define N(0) = 0 and N(n) = |z(n)|−|z(n−1)|
for n ≥ 1. Let G be the event {z(n) 
= 0 for all n ≥ 0}. We claim that there exists a
δ > 0 such that

E[exp(−δN(n+ 1))|z(n)] ≤ 1.(3.6)

Since N(n + 1) = 0 whenever z(n) = 0, it follows that E[exp(−δN(n + 1))|z(n) =
0] = 1 for any choice of δ. Let z ∈ Z

k
+\{0} be given. Define

g(θ) = E[exp(θN(n+ 1))|z(n) = z].

Recall that for the replicator process there is an integer m such that no more than
2m balls are being added and no more than 2 balls are being removed at any given
update of the process. Therefore,

g(θ) =

2m∑
i=−2

exp(θi)P [N(n+ 1) = i|z(n) = z].
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2162 SEBASTIAN J. SCHREIBER

It follows that g(0) = 1, g′(0) = E[N(n + 1)|z(n) = z] ≥ a > 0, and |g′′(θ)| <
e2m8m2(1 +m) for all θ ∈ [−1, 1]. Since g′(θ) = g′(0) +

∫ θ

0
g′′(s)ds, it follows that

g′(θ) > 0 for θ ∈ [−δ, 0], where δ = a
e2m8m2(1+m) . Hence (3.6) holds for this choice

of δ.
Next we define M(n) = exp(−δ(N(1) + · · ·+N(n))) and Fn to be the σ-algebra

generated by z(1), . . . , z(n). Since z(n) is a Markov chain, our choice of δ implies
that E[M(n + 1)|Fn] = M(n)E[exp(−δN(n + 1))|z(n)] ≤ M(n). Therefore M(n) is
a supermartingale. Define the stopping time

T = inf{n : z(n) = 0}.
To use this stopping time, we use the following generalization of Wald’s equation (see,
e.g., Theorem 7.6 in Chapter 4 of [9]).

Theorem 3.3. If M(n) is a nonnegative supermartingale and T ≤ ∞ is a
stopping time, then E[M(T )] ≤ E[M(0)], where M(∞) = limn→∞M(n) exists by the
martingale convergence theorem.

Applying this theorem to our supermartingale, we get that E[M(T )] ≤ 1. Since
N(0) + · · ·+N(T ) = −|z(0)| whenever T < ∞, it follows that

1 ≥ E[M(T )] ≥ exp(δ|z(0)|)P [T < ∞].

Therefore P [T < ∞] ≤ exp(−δ|z(0)|) and P [G] = P [T = ∞] ≥ 1− exp(−δ|z(0)|).
To prove assertion (ii), we define a new sequence of random variables by Ñ(0) = 0

and

Ñ(i) =

{
N(i) if z(i) 
= 0,
a if z(i) = 0

for i ≥ 1. Notice that on the event G, Ñ(i) = N(i) for all i ≥ 1. Let

M̃(n) =
n∑

i=1

1

i
(Ñ(i)− E[Ñ(i)|Fi−1]).

M̃(n) is a martingale that satisfies

sup
n
E[M̃(n)2] ≤ 4m2

∑
i≥1

1

i2

as |Ñ(i)| ≤ 2m. Therefore by Doob’s convergence theorem {M̃(n)}n≥1 converges
almost surely. By Kronecker’s lemma

lim
n→∞

1

n

n∑
i=1

Ñ(i)− E[Ñ(i)|Fi−1] = 0(3.7)

almost surely. Since
∑n

i=1 Ñ(i) = |z(n)|−|z(0)| on the event G and E[Ñ(i)|Fi−1] ≥ a,

(3.7) implies that lim infn→∞
|z(n)|

n ≥ a almost surely on the event G.
Theorem 2.6 implies the following result about convergence to attractors with

positive probability.
Theorem 3.4. Let z(n) be a replicator process such that

P [Rij(0) + R̃ji(0) ≥ 1] = P [ri(0) ≥ 1] = 1(3.8)
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for all i, j. If zi(0) ≥ 1 for all i and A is an attractor for (3.3), then P [L(X) ⊆ A] > 0
where X is defined by (2.7).

Proof. Let z(n) be a replicator process such that zi(0) ≥ 1 for all 1 ≤ i ≤ k

and such that (3.8) holds. Let x(n) = z(n)/|z(n)|, τ(n) = ∑n−1
i=0

1
|z(i)| , and X(t) be

defined by (2.7).
First, we show that the set of attainable points is the entire simplex ∆k−1. Since

P [ri(0) ≥ 1] = 1 for 1 ≤ i ≤ k, there exists w = (w1, . . . , wk) ∈ Z
k
+ such that wi ≥ 1

for 1 ≤ i ≤ k, and P [ri(0) = wi] > 0. Since zi(0) ≥ 1 for 1 ≤ i ≤ k, it follows that for
v ∈ Z

k
+,

P

[
x(|v|) = z(0) + (v1w1, . . . , vkwk)

|z(0)|+ v1w1 + · · ·+ vkwk

]
> 0.

Since the set {
z(0) + (v1w1, . . . , vkwk)

|z(0)|+ v1w1 + · · ·+ vkwk
: v ∈ Z

k
+

}

is dense in ∆k−1 and τ(n) ≥ ∑n−1
i=0

1
|z(0)|+i , it follows that for any t ≥ 0 and open set

U in ∆k−1 there is a v ∈ Z
k
+ such that τ(|v|) ≥ t and

P [∃s ≥ t : X(s) ∈ U ] ≥ P

[
x(|v|) = z(0) + (v1w1, . . . , vkwk)

|z(0)|+ v1w1 + · · ·+ vkwk

]
> 0.

Therefore, the set of attainable points for X is the entire simplex ∆k−1.
To invoke Theorem 2.6 and thereby complete this proof we verify the initial

assumptions of Theorem 2.6. Our assumptions that zi(0) ≥ 1 for 1 ≤ i ≤ k and
P [Rij(0) + R̃ji(0) ≥ 1] = P [ri(0) ≥ 1] = 1 for all 1 ≤ i, j ≤ k imply that |z(n)| ≥
|z(0)|+ n almost surely for n ≥ 0. Equations (3.1) and (3.2) imply that

|Fi(N,x)− fi(N,x)| = xi
N

|E[Rii(0) + R̃ii(0)− ri(0)]| ≤ 3m

N

for all N ≥ 1, x ∈ ∆k−1, and 1 ≤ i ≤ k. Therefore (2.10) is satisfied for an appropriate
choice of β > 0.

Theorem 3.4 has immediate implications for a permanent replicator equation:
a replicator equation (3.3) such that there exists a compact attractor A ⊂ int∆k−1

whose basin of attraction equals int∆k−1. Biologically, permanence corresponds to the
long-term coexistence of all strategies and has been studied extensively for replicator
equations [15] which are know to exhibit quite complex dynamics (e.g., the higher
dimension hypercycle equations exhibit heteroclinic cycles on the boundary and stable
periodic orbits in the interior of the simplex [14]).

Corollary 3.5. Let z(n) be a replicator process such that the mean limit flow
(3.3) is permanent. Assume that zi(0) ≥ 1 for all 1 ≤ i ≤ k and

P [Rij(0) + R̃ji(0) ≥ 1] = P [ri(0) ≥ 1] = 1(3.9)

for all i, j. Then P [L(X) ⊂ int∆k−1] > 0, where X is defined by (2.7).

3.1. An example: The rock-scissors-paper game. To illustrate what the
theory can and cannot tell us, we conclude by studying a replicator process inspired
by the children’s game in which rock (strategy 1) beats scissors, scissors (strategy 2)
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1 2 3 4 5
l

0.2

0.4

0.6
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1

0.1 0.2 0.3 0.4 0.5
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0.1

0.2

0.3

0.4

(a) (b)

Fig. 3.1. Probability of extinction for the rock-scissors-paper process when a(n) and ã(n) equal
−1, 1, and 2 with probabilities p, 1 − 2p, and p, respectively, while b(n) and b̃(n) equal −1, 4, and
9 with probabilities p, 1 − 2p, and p, respectively. In (a), p = 1/2 and z(0) = (l, l, l), while in (b),
z(0) = (1, 1, 1) and p varies.

beats paper, and paper (strategy 3) beats rock. This evolutionary game is believed to
be played by males of the lizard species Uta stansburiana [26] that exhibit color poly-
morphisms associated with three mating strategies: keeping one female and guarding
it closely, keeping several females and guarding each female less closely, and guarding
no females and mating with unguarded females.

To define this process, let m ≥ 1 be an integer, and let a(n), ã(n), and b(n)
be sequences of independent and identically distributed random variables that take
values in the set {0, 1, . . . ,m}. Define random payoff matrices as follows:

R(n) =


 a(n) b(n) −1

−1 a(n) b(n)
b(n) −1 a(n)


 , R̃(n) =


 ã(n) b(n) −1

−1 ã(n) b(n)
b(n) −1 ã(n)


 ,

and

r(n) =


 a(n)

a(n)
a(n)


 .

Assume that E[ã(0)] = E[a(0)] = 1 and E[b(0)] = 4. Since the conditions of Theo-
rem 3.1 are satisfied, there is a δ > 0 such that this replicator process goes extinct
with a probability less than exp(−δ|z(0)|). In Figure 3.1, we numerically estimate the
probability of extinction when a(n) and ã(n) equal −1, 1, and 2 with probabilities
p, 1 − p, and p, respectively, while b(n) and b̃(n) equal −1, 4, and 9 with probabil-
ities p, 1 − 2p, and p, respectively. Consistent with the predictions of Theorem 3.1,
Figure 3.1(a) shows that the probability of extinction decreases with initial popula-
tion size. On the other hand, Figure 3.1(b) shows that the probability of extinction
increases as the variance of the payoff matrix increases.

The replicator dynamics for the payoff matrix A = E[R(0)+R̃(0)] are well known
(see, e.g., Theorem 7.7.2 in [15]), and its phase portrait is shown in Figure 3.2. On
the event of nonextinction, Corollary 3.2 implies that the limit set of the distribution
X(t) of balls is either an equilibrium for the mean limit ODE or the boundary of ∆2.
In Figure 3.3, sample paths of X(t) are shown for the process when a(n) = ã(n) = 1,
b(n) = b̃(n) = 4, and z(0) = (1, 1, 1). Theorem 3.4 predicts that X(t) converges
with positive probability to (1/3, 1/3, 1/3) as illustrated in Figure 3.3(a). However,

D
ow

nl
oa

de
d 

09
/0

6/
22

 to
 7

1.
23

3.
37

.1
57

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



URN MODELS AND RANDOM GENETIC DRIFT 2165

Fig. 3.2. The phase diagram for the rock-scissors-paper game.

(a) (b)

Fig. 3.3. Sample paths of X(t) for the rock-scissors-paper process with a(n) = ã(n) = 1,
b(n) = b̃(n) = 4, and z(0) = (3, 3, 3).

1 2 3 4
l

0.1

0.2

0.3

0.4

0.5

(a) (b)

Fig. 3.4. Numerical approximations for the probability of a strategy being removed in finite time
for the rock-scissors-paper process. In (a), b(n) = b̃(n) = 4, a(n) = ã(n) = 1, and z(0) = (l, l, l). In
(b), the process is given by b(n) = b̃(n) = 4 + c(n), where c(n) takes on values −l and l with equal
likelihood, a(n) = ã(n) = 1, and z(0) = (3, 3, 3).

if papers initially meet scissors too frequently, then with positive probability the
paper strategy is removed in finite time. With no papers left, rocks crush scissors
resulting in a rock dominated world as illustrated in Figure 3.3(b). Therefore, unlike
its deterministic counterpart, a strategy can be removed in finite time by the rock-
scissors-paper process. In Figure 3.4(a), we numerically approximate the probability
of a strategy being removed in finite time when a(n) = ã(n) = 1, b(n) = b̃(n) = 4,
and z(0) = (l, l, l) with l = 1, 2, . . . , 10. As suggested by Theorem 3.4, this probability
decreases as the initial population size increases. Alternatively, Figure 3.4(b) shows
numerical estimates for the probability of a strategy being removed in finite time
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2166 SEBASTIAN J. SCHREIBER

when a(n) = ã(n) = 1, b(n) = b̃(n) = 4 + c(n), where the c(n) are independent and
identically distributed random variables that take on the value −l and l with equal
likelihood and z(0) = (3, 3, 3). Figure 3.4(b) illustrates that increasing the variance of
the payoff matrix increases the likelihood of a strategy being removed in finite time.

4. Conclusions. We introduce a generalized class of urn processes that can be
used to model the dynamics of finite populations of interacting individuals. This class
of models includes what we call the replicator process for which updates correspond
to pairwise interactions between individuals that influence the likelihood of replica-
tion and death. It is our contention that these processes provide insight into the
relative importance of natural selection and random genetic drift on the evolution of
finite populations with the potential for growth. In particular, they may help popu-
lation geneticists better understand the “founder-effect” in which a new population
is established by a few original founders [25].

Like their branching process sisters, these urn processes either go extinct in finite
time or grow exponentially with respect to a natural time scale. The probability of
growth represents the likelihood a founding population successfully establishes itself
and is likely to be of interest to population geneticists. We have shown that if the
replicator process expects to exhibit growth whenever individuals are present, then
the process exhibits growth with positive probability. Our work suggests that the
likelihood of a population establishing itself increases with the initial population size
and decreases with the variance of the payoffs for pairwise interactions.

For these models, the effect of random fluctuations is most pronounced when the
population numbers remain small. When the populations become sufficiently large,
they tend to grow at an exponential rate and evolve in an essentially deterministic
way. Consequently, on the event of growth, one associates a mean limit ODE with
the process. The mean limit ODE represents the force of natural selection. Namely,
if the populations follow the expected, then the distribution of strategies follow the
trajectories of the mean limit ODE. However, since the population sizes are finite, the
distribution of strategies can deviate from the expected. These deviations correspond
to random genetic drift and can have unexpected consequences. For instance, when
the initial distribution of strategies lies in the basin of attraction for an attractor of
the mean limit ODE, random fluctuations can push the process permanently out of
this basin of attraction. Such motions are impossible for solutions of the mean limit
ODE, and correspond to random genetic drift overcoming natural selection. Our
results suggest that random genetic drift overcoming selection is less likely for large
populations or rapidly growing populations, and is more likely for populations for
which pairwise interactions lead to highly variable outcomes.
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