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Abstract

We study a generalized model of 2n interacting species consisting of
n competing prey and n predators each of which feeds exclusively upon
one of the prey species. Under the assumption that the prey community
is founder-controlled (the positive equilibria determined by single prey
species are asymptotically stable in prey phase space), it is shown that
the n predators can mediate uniform persistence when their mortality
rates are sufficiently small. When this occurs, a repelling heteroclinic
network on the boundary of the positive orthant is formed in which the
removal of any predator leads to a system with a globally asymptotically
stable equilibrium that only supports a single species.

1 Introduction

A basic question confronting ecologists is: what mechanisms help mediate co-
existence amongst species competing for overlapping resources? [1]. One such
mechanism, the keystone effect, involves a complex of predators who dynami-
cally readjust the competitive balance of an ecological community [13]. Mathe-
matical studies of this effect herald back to the early work of Slobodkin [16]
who showed that the addition of a density-dependent mortality term could
mediate coexistence between Lotka-Volterra competitors. Since then, studies
of low dimensional communities have focused on various types of predator-
mediated coexistence: local stability of an equilibrium [6, 7, 9, 18], uniform per-
sistence [4, 5, 8, 12, 14, 15] and bifurcations to non-equilibrium attractors [11].
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Currently, few generalizations to higher dimensional communities exist that
answer the following two questions: How many predators does it take to medi-
ate coexistence on n competing species? What is the effect of removing a single
predator from these communities? Since competitive systems can have arbitrar-
ily complex dynamics [17], a mathematically complete response is impossible.
However, if we restrict our attention to ecologically prominent community and
predator types, answers may be forthcoming. With regards to competition, Yo-
dzis [20] distinguished between two community types: founder-controlled and
dominance-controlled. In founder-controlled communities, species have roughly
equal competitive abilities and the species that establishes itself first prevents
other competitors from invading. In dominance-controlled communities, pair-
wise interactions result in the exclusion of one species. With regard to pre-
dation, ecologists often categorize predators into two types: generalists and
specialists [1]. As their names suggest, generalists are predators that feed on
many different prey while specialists feed exclusively on a single prey species [1].

Wolkowicz [19] studied the issue of predator-mediated coexistence for a com-
munity consisting of dominance-controlled prey and specialist predators. Under
the assumptions that the prey compete for an essential and non-reproducing re-
source, the resource uptake is Holling type I or II and the prey uptake is linear,
Wolkowicz showed that it takes n− 1 specialists to mediate coexistence. To un-
derstand the effect of predator deletion on this community, we refer to the work
of Butler and Wolkowicz [3]. They showed that in the absence of the predators,
the prey community has an ordering, say prey 1 < . . . < prey n, where prey i
displaces prey j whenever i > j. Hence, for the persistent community consisting
of n prey and n − 1 predator species, Wolkowicz [19] showed that the removal
of prey i’s predator results in the extinction of prey species 1 through i− 1 and
their affiliated predators.

In this article, we focus on how specialist predators can mediate perma-
nence for communities of founder-controlled prey. In contrast to the dominance-
controlled community, we will show that it takes n specialist predators to me-
diate persistence. When this occurs, the removal of any predator results in the
collapse of the entire community except for one prey species.

2 Main Result

Consider the following equations of competition for n species

dxi
dt

= xifi(x) i = 1, . . . , n (1)

where xi is density of species i, x = (x1, ..., xn), and fi is the per-capita growth
rate of species i. We assume that the fi satisfy three conditions:

C1 If the density of any species increases, the growth rate of each species de-
creases. Hence ∂fi

∂xj
< 0 for i, j ∈ {1, ..., n}.

2



C2 In the absence of the other species, each competitor has a well defined
carrying capacity. Hence, for each i there exists x∗i > 0 such that

fi(0, ..., 0, x
∗
i , 0, ..., 0) = 0.

C3 The community is founder-controlled [20]. In other words,

fj(0, ..., 0, x
∗
i , 0, ..., 0) < 0

for all i 6= j.

To mediate coexistence for founder-controlled communities, we consider adding
specialist predators whose functional (the per-capita rate of consumption) and
numerical (the per-capita fecundity rate of the predator) responses are C1 func-
tions, gi and hi : R+ → R+, that satisfy

G1 In the absence of prey, there is no consumption or reproduction. Hence,
hi(0) = gi(0) = 0.

G2 As prey densities increase, the per-capita consumption and the per-capita
fecundity rates increase. Hence g′i(x) and h′i(x) are strictly positive for all
x ≥ 0.

Responses that satisfy these criteria include Holling’s type I, II and III re-
sponses [1]. The dynamics of this augmented community are determined by

dxi
dt

= xif(x)− yigi(xi) (2)

dyi
dt

= yihi(xi)−miyi

i = 1, . . . , n

where yi is the density of predator i and mi is the per-capita mortality rate for
predator i.

Recall that Eq. 2 is uniformly persistent [2] or permanent [15] if there exists
a constant K > 0 such that

1

K
≤ lim inf

t→∞
xi(t) ≤ lim sup

t→∞
xi(t) ≤ K

and
1

K
≤ lim inf

t→∞
yi(t) ≤ lim sup

t→∞
yi(t) ≤ K

for any solution z(t) = (x(t),y(t)) to Eq. 2 with positive initial conditions. It is
easy to check that adding n−1 specialists can not mediate uniform persistence as
the equilibria corresponding to predator-free prey remain asymptotically stable
in the augmented phase space. The following theorem shows that adding n
specialists can mediate uniform persistence.
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Theorem 1 Let fi : Rn
+ → R be C1 functions that satisfy C1-C3 and gi, hi :

R+ → R+ be C1 functions that satisfy G1-G2. If the mi are sufficiently small,
then Eq. 2 is uniformly persistent and any solution z(t) = (x(t),y(t)) to Eq. 2
with xi(0) > 0 for all i ≥ 1, y1(0) = 0 and yi(0) > 0 for all i ≥ 2 satisfies

lim
t→∞

z(t) = (x∗1, 0, . . . , 0).

In particular Thm. 1 shows that ∂R2n
+ contains a repelling heteroclinic

network for Eq. 2 whenever the mi are sufficiently small.

3 Proof of Theorem 1

Define

Σ = [0, x∗1]× ...× [0, x∗n] ⊂ Rn
+

α = max
i,j,x∈Σ

−∂fj
∂xi

(x)

β = min
i,x∈[0,x∗

i
]
{g′i(x), h′i(x)}

γ = max
i,x∈[0,x∗

i
]
{g′i(x), h′i(x)}

η = min
i,j,x∈Σ

−∂fj
∂xi

(x)

F = max
i
{fi(0), 1/fi(0)}

λ = min
i
{fi(x∗1, . . . , x∗n)}

m = max
i
mi

Note that C1, C2 and the fact that the fi are nonnegative imply that Σ×Rn

is forward invariant for the flow generated by Eq. 2 and that every solution to
Eq. 2 eventually enters Σ×Rn.

The first step in the proof of Thm. 1 is to prove there is a global compact
attractor for Eq. 2.

Lemma 1 Given fi, gi and hi as stated in Thm. 1, there exists a constant
C > 0 such that

lim sup
t→∞

|z(t)| < C

for any solution z(t) to Eq. 2.

Proof. For positive constants A and B, we have that

n∑
i=1

Aẋi +Bẏi =

n∑
i=1

(xifi(x)− yigi(xi))A+ (yihi(xi)−miyi)B (3)
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≤
n∑
i=1

xi(fi(0)− ηxi)A+ yixi(Bγ −Aβ)−miyiB.

Given a solution z(t) = (x(t),y(t)) for Eq. 2 define S(t) =
∑
iAxi(t) +

Byi(t). Choose A and B such that Aβ > Bγ and ε > 0 such that ε < minimi.
Eq. 3 implies

Ṡ + εS ≤
n∑
i=1

xiA(fi(0) + ε− ηxi) + yixi(Bγ −Aβ)− (mi − ε)Byi

≤
n∑
i=1

xiA(F + ε− ηxi)

where the second line follows from the choice of A,B and ε. Since the function
s 7→ s(F + ε− ηs) takes on its maximum value at F+ε

2η , it follows that

Ṡ + εS ≤ An(F + ε)2

4η

and

lim sup
t→∞

S(t) ≤ An(F + ε)2

4ηε
2

To prove that Eq. 2 is uniformly persistent whenever the mi are sufficiently
small we proceed inductively on n. When n = 1, Eq. 2 is uniformly persistent
provided that h1(x∗1) > m1. Since h1(x∗1) > 0, Eq. 2 is uniformly persistent for
sufficiently small m1.

Assume Eq. 2 is uniformly persistent whenever n < k and the mi are suffi-
ciently small. We intend to show that Eq. 2 is uniformly persistent when n = k
and the mi are sufficiently small. To do this, we make use of a result due to
Hutson [10]. Recall that the limit set of an invariant set K for Eq. 2 equals

L+(K) = ∪z∈Kω(z)

where ω(z) is the omega-limit set for z ∈ R2n
+ .

Theorem (Hutson 1984).Consider F (z) ∈ C1(R2n
+ ,R2n) such that ∂R2n

+

is invariant for the flow of ż = F (z). Assume this flow is dissipative and
P ∈ C1(int R2n

+ ,R+) is bounded below. Define

φ(z) =

{
<∇P (z),F (z)>

P (z) if z ∈ int R2n
+

lim infw→z,w∈int R2n
+
φ(z) else.

Then for any solution z(t) to ż = F (z), φ(z(t)) is integrable and the system is
uniformly persistent provided that

sup
t>0

∫ t

0

φ(z(s))ds > 0
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for all solutions z(t) such that z(0) ∈ L+(∂Rn
+).

To make use of Hutson’s Thm., we define

P (z) =

n∏
i=1

xiy
a
i

where a is a positive constant that remains to be determined. For z ∈ int R2n
+ ,

we get

φ(z) =

n∑
i=1

fi(x)− gi(xi)yi
xi

+ ahi(xi)− ami.

φ extends continuously to ∂R2n
+ as limxi→0

gi(xi)
xi

= g′i(0).
To simplify the presentation of the proof we introduce the following nota-

tions: Given z(t) a solution to Eq. 2 and a continuous function ψ : R2n → R
define

ψ(z) = lim sup
T→∞

1

T

∫ T

0

ψ(z(t))dt

and

ψ(z) = lim inf
T→∞

1

T

∫ T

0

ψ(z(t))dt.

Since

sup
t>0

1

T

∫ T

0

φ(z(t))dt ≥ φ(z) (4)

it is sufficient to show that φ(z) > 0 for any solution z(t) to Eq. 2 with z(0) ∈
L+(∂R2n

+ ).
First, consider the zero solution, z(t) ≡ 0. For this solution,

φ(0) =

n∑
i=1

fi(0)− ami ≥ n(1/F − am)

and is positive if m is sufficiently small.
To show that φ(z) is positive for other orbits in L+(∂R2n

+ ), we consider
two cases: all “active” competitors are predated upon or there are “active”
competitors free from predation. To deal with the first case, assume that z(t)
is a solution to Eq. 2 such that z(0) ∈ L+(∂R2n

+ ) and yi(0) > 0 whenever
xi(0) > 0. Since predators that predate on inactive prey eventually go extinct
and z(0) ∈ L+(∂R2n

+ ), we have yi(0) = 0 whenever xi(0) = 0. Define the set of
active competitors as A = {i : xi(0) > 0}. Lemma 1 implies that

0 ≥ lim sup
T→∞

1

T
ln
yi(T )

yi(0)

= hi(xi)−mi

≥ βxi −mi
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for any i ∈ A. Hence,

xi ≤
m

β
(5)

for all i ∈ A.
Now consider i /∈ A, Eq. 5 implies that

fi(x) ≥ fi(0)−
∑
j∈A

αxj ≥ fi(0)− αm|A|
β

.

where |A| is the cardinality of A. Since |A| < n, induction implies that the
subsystem determined by the active competitors and predators is uniformly
persistent for sufficiently small mi. Therefore, for sufficiently small mi it follows
that

0 = lim
T→∞

1

T
ln
xi(T )

xi(0)
= lim
T→∞

1

T
ln
yi(T )

yi(0)

for all i ∈ A. Equivalently,

0 = lim
T→∞

1

T

∫ T

0

fi(x(t))− gi(xi(t))yi(t)

xi(t)
dt

and

0 = lim
T→∞

1

T

∫ T

0

hi(xi(t))−midt

for all i ∈ A. Thus, a lower bound for φ(z) is given by

∑
i/∈A

(
fi(x)− ami

)
≥

∑
i/∈A

fi(0)− α
∑
j∈A

xj − am


≥

(
1/F − |A|αm

β
− am

)
(n− |A|).

Since |A| < n, φ(z) is positive for m sufficiently small.
Next we consider the case when there are more active competitors than

predators. Let z(t) = (x(t),y(t)) be a solution to Eq. 2 such that z(0) ∈
L+(R2n

+ ) and for some i, xi(0) > 0 and yi(0) = 0. Since predators that predate

on inactive prey eventually go extinct and z(0) ∈ L+(∂R2n
+ ), once again we have

yi(0) = 0 whenever xi(0) = 0. Define the “active” preys to be A = {i : xi(0) >
0} and the “active” predators to be P = {i : yi(0) > 0}. Our assumption that
there are more active competitors than predators implies that P is a proper
subset of A. Lemma 1 implies there exists a C > 0 such that yi ≤ C for all
i ∈ P. Therefore we get

fi(x)− gi(xi)yi
xi

≥ fi(x
∗
1, ..., x

∗
n)− γyi

≥ λ− γC
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for all i ∈ P. For i ∈ A\P, we have that

0 ≥ lim sup
T→∞

1

T
ln
xi(T )

xi(0)

= fi(x)

≥ fi(0)−
n∑
j=1

αxj .

Hence, there exists a j ∈ A\P such that

xj ≥
fi(0)

αn
≥ 1

Fαn
.

For i ∈ {1, . . . , n}\A, it also follows that

fi(x) ≥ λ.

Using these estimates, we get

φ(z) ≥ n(λ− am)− |P|γC + ahj(xj)

≥ n(λ− am)− |P|γC +
aβ

Fαn

Therefore φ(z) is positive whenever a is sufficiently large and m is sufficiently
small. Hence we have shown that Eq. 2 is uniformly persistent when n = k
completing the proof of the first assertion of Thm. 1.

Now we prove the second assertion of Thm. 1. Assume that z(t) is a solution
to Eq. 2 such that xi(0) > 0 for all i, yi(0) > 0 for all i > 1, and y1(0) = 0. We
have previously shown xi ≤ m

β for all i > 1. Therefore,

0 ≥ lim sup
T→∞

1

T
ln
x1(T )

x1(0)

= f1(x)

≥ η(x∗1 − x1)− α
∑
i>1

xi

≥ η(x∗1 − x1)− α(n− 1)m

β
.

Thus,

x∗1 − x1 ≤
α(n− 1)m

βη
. (6)

For i > 1,

fi(x) ≤ fi(x1, 0, ..., 0) (7)

≤ α(x∗1 − x1) + fi(x
∗
1, 0, ..., 0).
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C3 implies that fi(x
∗
1, 0, ..., 0) < 0 for i > 1. This observation in conjunction

with Eqs. 6 and 7 implies that for sufficiently small m, fi(x) is negative for all
i > 1. Therefore,

lim sup
t→∞

1

t
ln

(
xi(t)

xi(0)

)
=
ẋi
xi
≤ fi(x) < 0

and limt→∞ xi(t) = 0 for all i > 1.
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