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Abstract

We study a generalized model of 2n interacting species consisting of
n competing prey and n predators each of which feeds exclusively upon
one of the prey species. Under the assumption that the prey community
is founder-controlled (the positive equilibria determined by single prey
species are asymptotically stable in prey phase space), it is shown that
the n predators can mediate uniform persistence when their mortality
rates are sufficiently small. When this occurs, a repelling heteroclinic
network on the boundary of the positive orthant is formed in which the
removal of any predator leads to a system with a globally asymptotically
stable equilibrium that only supports a single species.

1 Introduction

A basic question confronting ecologists is: what mechanisms help mediate co-
existence amongst species competing for overlapping resources? [1]. One such
mechanism, the keystone effect, involves a complex of predators who dynami-
cally readjust the competitive balance of an ecological community [13]. Mathe-
matical studies of this effect herald back to the early work of Slobodkin [16]
who showed that the addition of a density-dependent mortality term could
mediate coexistence between Lotka-Volterra competitors. Since then, studies
of low dimensional communities have focused on various types of predator-
mediated coexistence: local stability of an equilibrium [6, 7, 9, 18], uniform per-
sistence [4, 5, 8, 12, 14, 15] and bifurcations to non-equilibrium attractors [11].
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Currently, few generalizations to higher dimensional communities exist that
answer the following two questions: How many predators does it take to medi-
ate coexistence on n competing species? What is the effect of removing a single
predator from these communities? Since competitive systems can have arbitrar-
ily complex dynamics [17], a mathematically complete response is impossible.
However, if we restrict our attention to ecologically prominent community and
predator types, answers may be forthcoming. With regards to competition, Yo-
dzis [20] distinguished between two community types: founder-controlled and
dominance-controlled. In founder-controlled communities, species have roughly
equal competitive abilities and the species that establishes itself first prevents
other competitors from invading. In dominance-controlled communities, pair-
wise interactions result in the exclusion of one species. With regard to pre-
dation, ecologists often categorize predators into two types: generalists and
specialists [1]. As their names suggest, generalists are predators that feed on
many different prey while specialists feed exclusively on a single prey species [1].

Wolkowicz [19] studied the issue of predator-mediated coexistence for a com-
munity consisting of dominance-controlled prey and specialist predators. Under
the assumptions that the prey compete for an essential and non-reproducing re-
source, the resource uptake is Holling type I or I and the prey uptake is linear,
Wolkowicz showed that it takes n — 1 specialists to mediate coexistence. To un-
derstand the effect of predator deletion on this community, we refer to the work
of Butler and Wolkowicz [3]. They showed that in the absence of the predators,
the prey community has an ordering, say prey 1 < ... < prey n, where prey ¢
displaces prey j whenever ¢ > j. Hence, for the persistent community consisting
of n prey and n — 1 predator species, Wolkowicz [19] showed that the removal
of prey i’s predator results in the extinction of prey species 1 through ¢ — 1 and
their affiliated predators.

In this article, we focus on how specialist predators can mediate perma-
nence for communities of founder-controlled prey. In contrast to the dominance-
controlled community, we will show that it takes n specialist predators to me-
diate persistence. When this occurs, the removal of any predator results in the
collapse of the entire community except for one prey species.

2 Main Result

Consider the following equations of competition for n species
d.l?i
dt

where z; is density of species i, x = (21, ..., 2y,), and f; is the per-capita growth
rate of species . We assume that the f; satisfy three conditions:

:xifi(x) i:l,...,n (1)

C1 If the density of any species increases, the growth rate of each species de-

creases. Hence ggj <0fori,je{l,..,n}




C2 In the absence of the other species, each competitor has a well defined
carrying capacity. Hence, for each ¢ there exists 7 > 0 such that

£:(0,...,0,27,0,...,0) = 0.
C3 The community is founder-controlled [20]. In other words,
£;(0,...,0,27,0,...,0) < 0
for all ¢ # j.

To mediate coexistence for founder-controlled communities, we consider adding
specialist predators whose functional (the per-capita rate of consumption) and
numerical (the per-capita fecundity rate of the predator) responses are C'! func-
tions, ¢g; and h; : Ry — R, that satisfy

G1 In the absence of prey, there is no consumption or reproduction. Hence,
hi(O) = gi(O) =0.

G2 As prey densities increase, the per-capita consumption and the per-capita
fecundity rates increase. Hence g}(z) and hl(x) are strictly positive for all
x> 0.

Responses that satisfy these criteria include Holling’s type I, IT and III re-
sponses [1]. The dynamics of this augmented community are determined by

Wi = i) - gl 2
(il% = yihi(z:) — miy;
i = 1,...,n

where y; is the density of predator ¢ and m; is the per-capita mortality rate for
predator <.

Recall that Eq. 2 is uniformly persistent [2] or permanent [15] if there exists
a constant K > 0 such that

1
& < lminfei(t) < limsupa;(t) < K

and

1 liminf y;(¢) < lims (1) <K

7 < limin yi(t) < im sup y;i(t) <
for any solution z(t) = (x(¢),y(t)) to Eq. 2 with positive initial conditions. It is
easy to check that adding n—1 specialists can not mediate uniform persistence as
the equilibria corresponding to predator-free prey remain asymptotically stable
in the augmented phase space. The following theorem shows that adding n

specialists can mediate uniform persistence.



Theorem 1 Let f; : R} — R be C' functions that satisfy C1-C8 and g;, h;

R, — Ry be C! functions that satisfy G1-G2. If the m; are sufficiently small,

then Eq. 2 is uniformly persistent and any solution z(t) = (x(t),y(t)) to Eq. 2

with 2;(0) > 0 for alli>1, y1(0) =0 and y;(0) > 0 for all i > 2 satisfies
tlggoz(t) = (z7,0,...,0).

In particular Thm. 1 shows that 8Ri" contains a repelling heteroclinic
network for Eq. 2 whenever the m; are sufficiently small.

3 Proof of Theorem 1

Define
Y = [0,2}] x..x[0,z}] CR"
B of;
@ = 2?1)??2 B ox; (x)
B = min {gi(x),hi(z)}
i,2€[0,27]
i,z€[0,z}]
B . Of;
no= iJr'gérelE B ox; ( )
A = Inm{fz(xf,,x;)}

Note that C1, C2 and the fact that the f; are nonnegative imply that ¥ x R"
is forward invariant for the flow generated by Eq. 2 and that every solution to
Eq. 2 eventually enters X x R".

The first step in the proof of Thm. 1 is to prove there is a global compact
attractor for Eq. 2.

Lemma 1 Given f;,g; and h; as stated in Thm. 1, there exists a constant
C > 0 such that
limsup |z(t)| < C

t—o0

for any solution z(t) to Eq. 2.

Proof. For positive constants A and B, we have that

n

ZA%' + By, = Z(fﬁzfz(x) —vigi(z:)) A+ (yihi(z:) — miy;) B (3)

i=1 i=1



< in(fi(o) —nzi) A+ yixi(By — AB) — myy; B.
=1

Given a solution z(t) = (x(t),y(t)) for Eq. 2 define S(t) = >, Ax;(t) +
By;(t). Choose A and B such that AS > By and € > 0 such that € < min; m;.
Eq. 3 implies

S+eS < > @iA(fi(0) + € —ni) + ywi(By — AB) — (m; — €) By;
i=1

< Z 2 A(F + € — nx;)

i=1
where the second line follows from the choice of A, B and €. Since the function
s+ s(F 4+ € — ns) takes on its maximum value at F2J?;E’ it follows that

) 2
S_i_esgw
4n

and

limsup S(t) <
t—>oop ( ) - dne

To prove that Eq. 2 is uniformly persistent whenever the m; are sufficiently
small we proceed inductively on n. When n = 1, Eq. 2 is uniformly persistent
provided that hq(x]) > mq. Since hi(x}) > 0, Eq. 2 is uniformly persistent for
sufficiently small m.

Assume Eq. 2 is uniformly persistent whenever n < k and the m; are suffi-
ciently small. We intend to show that Eq. 2 is uniformly persistent when n = k
and the m; are sufficiently small. To do this, we make use of a result due to
Hutson [10]. Recall that the limit set of an invariant set K for Eq. 2 equals

LT(K) = Uzerxw(2)

where w(2) is the omega-limit set for z € R3".
Theorem (Hutson 1984).Consider F(z) € C'(R%",R*") such that ORZ"

is invariant for the flow of z = F(z). Assume this flow is dissipative and
P e C(int RY",Ry) is bounded below. Define
#(2) 7<VP(PZ()£’(Z)> if z € int Ri"
z) = .
liminfy ., weint Rz o(z) else.

Then for any solution z(t) to z = F(z), ¢(z(t)) is integrable and the system is
uniformly persistent provided that

sup/0 ¢(z(s))ds >0

t>0



for all solutions z(t) such that z(0) € LT (OR).
To make use of Hutson’s Thm., we define

n
z) = [[ =i
i=1

where a is a positive constant that remains to be determined. For z € int Rf_”,
we get

z) = Zfi(x) — M + ah;(x;) — am,.

T

¢ extends continuously to 8R+ as lim,, 0 gl(m ) = g:(0).

To simplify the presentation of the proof we introduce the following nota-
tions: Given z(t) a solution to Eq. 2 and a continuous function ¢ : R** — R
define

¥(z) = limsup — /1/)

T— o0
and
¥(z) —llquIilor(ljf* / P(z
Since

sup — 4
a1 [ otatwnar > o) )
it is sufficient to show that ¢(z) > 0 for any solution z(t) to Eq. 2 with z(0) €
LT (0RYY).

First, consider the zero solution, z(¢) = 0. For this solution,

= Zfi(o) —am; > n(1/F —am)

and is positive if m is sufficiently small.

To show that ¢(z) is positive for other orbits in L*(9RZ"), we consider
two cases: all “active” competitors are predated upon or there are “active”
competitors free from predation. To deal with the first case, assume that z(t)
is a solution to Eq. 2 such that z(0) € L*(9R?") and y;(0) > 0 whenever
x;(0) > 0. Since predators that predate on inactive prey eventually go extinct
and z(0) € LT (OR?"), we have y;(0) = 0 whenever z;(0) = 0. Define the set of
active competitors as A = {i : 2;(0) > 0}. Lemma 1 implies that

) 1y (T)
0 > limsup—1In
- T~>oop T yi(0)
= hi(z;) —m;
> Bz —my



for any i € A. Hence,

m
T; < — 5
5 (5)

for all i € A.
Now consider i ¢ A, Eq. 5 implies that
aml|A
1160 > £i(0) = 3 a7 > fi(0) - 4L
JEA

where |A| is the cardinality of A. Since |A| < n, induction implies that the
subsystem determined by the active competitors and predators is uniformly
persistent for sufficiently small m;. Therefore, for sufficiently small m; it follows

that T ) T
0= lim —lnxi( ): lim —1nyi( )
T—oo T x;(0) T—ooT  y;(0)

for all ¢ € A. Equivalently,

and

0= lim —/ hi(x;(t)) — mydt
for all i € A. Thus, a lower bound for ¢(z) is given by
Z(fi(x)—ami> Z fi(O)—aZTj—am
igA igA jEA

> (I/F - |A\% - am) (n — [A]).

vV

Since |A| < n, ¢(z) is positive for m sufficiently small.

Next we consider the case when there are more active competitors than
predators. Let z(t) = (x(t),y(t)) be a solution to Eq. 2 such that z(0) €
L*(R?Y") and for some 4, 2;(0) > 0 and ;(0) = 0. Since predators that predate
on inactive prey eventually go extinct and z(0) € L*(@Ri”), once again we have
y;(0) = 0 whenever z;(0) = 0. Define the “active” preys to be A = {i : z;(0) >
0} and the “active” predators to be P = {i : y;(0) > 0}. Our assumption that
there are more active competitors than predators implies that P is a proper
subset of A. Lemma 1 implies there exists a C' > 0 such that 7; < C for all
1 € P. Therefore we get

bt
—
>
~—
S
-
8]
5_/
N
vV

fl(x; o n) YYi
> A=—7C



for all i € P. For i € A\P, we have that

1 (T
0o > limsup—lnxl()

= fi(x)
> fi(0) - Z aL;.
j=1
Hence, there exists a j € A\P such that
fi(0) 1
A S
L= an ~— Fan
Fori e {1,...,n}\A, it also follows that
filx) = A

Using these estimates, we get

¢(z) > n(A—am)—|PlyC + ah;(x;)

ap
> n(A—am)—|PPC + Ton

Therefore ¢(z) is positive whenever a is sufficiently large and m is sufficiently
small. Hence we have shown that Eq. 2 is uniformly persistent when n = k
completing the proof of the first assertion of Thm. 1.

Now we prove the second assertion of Thm. 1. Assume that z(¢) is a solution
to Eq. 2 such that z;(0) > 0 for all 4, y;(0) > 0 for all i > 1, and y,(0) = 0. We
have previously shown z; < % for all ¢ > 1. Therefore,

0o > ll;njolip—ln 21(0)
= fi(x)
> e -T) —ad T
i>1
> e —ay) - DT
Thus,
T < a(nﬂ—nl)m (6)
Fori > 1,
filx) < fi(21,0,...,0) (7)
< a(x’{—a:*l)—l—fz(x’{,o,,())



C3 implies that f;(z7,0,...,0) < 0 for ¢ > 1. This observation in conjunction
with Egs. 6 and 7 implies that for sufficiently small m, f;(x) is negative for all
1 > 1. Therefore,

1 =1 =—<f;
1£nsupt n(xl(O)) z fi(x) <0

and limy_, o 2;(¢t) = 0 for all ¢ > 1.
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