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Summary

1.

 

Species often compete for breeding sites in heterogeneous landscapes consisting of

sources and sinks. To understand how the presence or absence of sink breeding sites influ-

ence ecological outcomes, we extend Pulliam’s source–sink model to competing species.

 

2.

 

In a homogeneous landscape consisting of source sites, we prove that one species, the

‘superior’ competitor, competitively excludes the other. Dominance is determined by a

simple rule: the species that at equilibrium acquires new breeding sites at a faster rate

dominates.

 

3.

 

We prove that the inclusion of sink sites can alter this ecological outcome by either

mediating coexistence, reversing competitive dominance, or facilitating a priority effect.

 

4.

 

Sink-mediated coexistence requires the species to exhibit asymmetries in acquiring

sink sites, the ‘inferior’ species to have a competitive advantage on sink sites and the

ratio of sink to source sites be sufficiently low.

 

5.

 

For example, if  the sink breeding sites are competitive refuges for the ‘inferior’ com-

petitor and not too low in quality, coexistence occurs if  the number of sink sites lies

below a threshold. Alternatively, when the number of sink sites exceeds this threshold,

competitive dominance is reversed and the ‘superior’ competitor is displaced.

 

6.

 

Counter-intuitively, despite being unable to support species in isolation, sink habitats

embedded in a geographical mosaic of sources and sinks can enhance biodiversity by

mediating coexistence or alter species composition by reversing competitive interactions.
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Introduction

 

Most species have birth and death rates that vary spa-

tially due to variation in abiotic (e.g. temperature, pre-

cipitation, nutrient availability) and biotic (e.g. predation,

competition, quality and availability of biotic resources)

factors. For each species, this variability may result in a

geographical mosaic of  source and sink populations

(Holt 1985; Pulliam 1988, 1996; Pulliam & Danielson

1991; Dias 1996; Holt 1997). In source populations,

birth rates exceed death rates and emigration exceeds

immigration. Hence, sources are net exporters of indi-

viduals. In sink populations, on the other hand, death

rates exceed birth rates and immigration exceeds

emigration. Sink habitats, by definition, cannot persist

without immigration.

Despite their inability to persist in isolation, there is

ample evidence that sink populations exist in nature

(Donovan 

 

et al

 

. 1995; Dias 1996; Pulliam 1996; Boughton

1999; Amezcua & Holyoak 2000; Foppen 

 

et al

 

. 2000;

Murphy 2001; Rosenheim 2001). The presence of sink

populations raises two fundamental questions: why do

these populations exist, and how do sink habitats affect

ecological interactions and outcomes? Theory and

empirical studies suggest that sink populations exist for

a variety of reasons. Populations may exhibit an ideal

pre-emptive distribution in which individuals move to

sink habitats when all source habitats are occupied

(Pulliam 1988; Pulliam & Danielson 1991). A dominance

hierarchy can yield source–sink dynamics provided

that subordinates have poorer prospects in the source
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habitat than in the sink habitat, but later may be able to

return to the source habitat (B. Kotler, personal com-

munication). While ideal free populations in which

individuals move freely to maximize their per-capita

fitness do not occupy sink habitats under equilibrium

conditions (Holt 1985), they may occupy sink habitats

under non-equilibrium conditions (Holt 1997; Jansen

& Yoshimura 1998). Finally, organisms may exhibit

maladaptive behaviour due to rapid shifts in the en-

vironment that prevent them from making optimal

habitat-selection decisions (Reme

 

s

 

 2000). Theoretical

and empirical work suggest that sink habitats can sig-

nificantly affect ecological interactions. For instance,

the addition of  sink habitats can increase population

abundance (Holt 1985; Pulliam 1988) by providing

alternative habitats when the source habitats are over-

crowded. The presence of  sink refuges for predators

(respectively, prey) can stabilize predator–prey inter-

actions by decreasing predation rates when prey numbers

are low (respectively, when predator numbers are high)

(Holt 1985; Amezcua & Holyoak 2000). Alternatively,

in environments subject to random disturbances,

dispersal between sink habitats can result in population

persistence at the regional scale even though persistence

does not occur at a local scale (Jansen & Yoshimura 1998).

Here, we confront the issue of how the presence of

sink habitats influences the ecological outcomes of

competing species. We begin by introducing a model

of species competing for breeding sites (more generally

space) in a homogeneous landscape. For this model, we

prove that one species always competitively excludes

the other species. In light of  this fact, we present and

analyse two models that introduce sink (more generally

lower-quality) breeding sites into the landscape. We

derive conditions under which the presence of sink sites

can mediate coexistence, facilitate a reversal of  com-

petitive dominance, or produce a priority effect in which

neither species can invade when rare.

 

General model formulation

 

Our model extends a single species model of Pulliam

(1988) to two species, species 1 and species 2, com-

peting for a finite number of breeding sites of which 

 

N

 

 are

higher-quality and 

 

Ñ

 

 are lower-quality. An annual

census of  the abundances, 

 

x

 

1

 

 and 

 

x

 

2

 

, of  species 1 and 2

is taken in the spring, after individuals have dispersed

and competed for breeding sites (Fig. 1). After the

census, individuals from species 

 

i

 

 with 

 

i

 

 

 

=

 

 1, 2 occupy-

ing higher-quality breeding sites produce on average 

 

β

 

i

 

progeny while individuals occupying lower-quality

breeding sites produce on average 

 

2

 

i

 

 progeny. By lower-

quality, we mean 

 

β

 

i

 

 

 

>

 

 

 

2

 

i

 

 for 

 

i

 

 

 

=

 

 1, 2. A long period of

survival through autumn and winter follows, in which a

fraction 1 –

 

 A

 

i

 

 of  the adults and a fraction 1 –

 

 J

 

i

 

 of  the

juveniles of species 

 

i

 

 perish. Following winter survival,

individuals disperse actively to breeding sites, making

use of  a breeding site if  it is available, and always

preferring a higher-quality site to a lower-quality site

(i.e. exhibit a pre-emptive ideal distribution, Pulliam &

Danielson 1991).

Under these assumptions, we arrive at difference

equations of the following form:

eqn 1

where 

 

f

 

i

 

( 

 

x

 

1

 

, 

 

x

 

2

 

) are ‘progeny functions’ that represent

the average number of progeny produced by species 

 

i

 

.

These functions will be specified later for different

scenarios and depend on the parameters 

 

β

 

i

 

, 

 

2

 

i

 

, 

 

N

 

 and 

 

Ñ

 

. In

all scenarios, the model for a single species with abun-

dance 

 

x

 

 restricted to a single habitat type reduces to:

eqn 2

with

For this model, if  

 

A

 

 

 

+

 

 

 

J

 

β

 

 

 

<

 

 1, then the population is a

sink population, or else it is a source and the population

converges to the equilibrium density 

 

x*

 

 

 

=

 

 

 

J

 

β

 

N

 

/ (1 

 

−

 

 

 

A

 

)

(Pulliam 1988). In the next three sections, we analyse

three realizations of  this model. The first realization

considers a homogeneous environment and results in a

competitive exclusion principle. The second realization

assumes that all individuals acquire higher-quality

breeding sites on a ‘first-come, first-served’ basis and

that only one species can acquire lower-quality breed-

ing sites. We present this special case as it permits for-

mulating the functions 

 

f

 

i

 

 explicitly and it illustrates

clearly how the inclusion of  sink habitats modifies

ecological outcomes. Finally, we formulate and analyse

Fig. 1. The life-cycle: an annual census is taken in each habitat

in the spring at the initiation of the breeding season (summer).

Each female of species i produces βi (respectively, 2i) juveniles

in the high-quality (respectively, low-quality) breeding sites.

Adults survive the non-breeding season (winter) with

probability Ai and juveniles survive with probability Ji.
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a model in which both species have access to the lower-

quality sites and can exhibit asymmetries in their

abilities to acquire breeding sites.

 

Competitive exclusion in a homogeneous 

environment

 

Assume that both species compete in a homogeneous

environment for 

 

N

 

 breeding sites. Individuals exhibit

lottery recruitment for breeding sites. To allow for

competitive asymmetries in the species acquisition of

breeding sites, let 

 

c

 

i

 

 denote the rate at which an individual

of species 

 

i

 

 acquires a breeding site, i.e. on average, an

individual of  species 

 

i

 

 requires 1/

 

c

 

i

 

 units of  time to

acquire a breeding site. If  there are more breeding sites

than individuals (

 

x

 

1

 

 

 

+

 

 

 

x

 

2

 

 

 

≤

 

 

 

N

 

), then all individuals are

assumed to acquire a breeding site. However, if  there

are more individuals than breeding sites (

 

x

 

1

 

 

 

+

 

 

 

x

 

2

 

 

 

>

 

 

 

N

 

),

then all breeding sites become occupied and Appendix A

proves that species 

 

i

 

 acquires (1 

 

− 

 

exp(–

 

c

 

i

 

 

 

T

 

) )

 

x

 

i

 

 breeding

sites where 

 

T

 

 

 

=

 

 

 

T

 

(

 

c

 

, 

 

x

 

) is the time it takes to occupy all breed-

ing sites and is the unique solution to 

 

Σ

 

i

 

(1 

 

−

 

 exp(

 

−

 

c

 

i

 

T

 

))

 

x

 

i

 

=

 

 

 

N

 

. In the special case of  individuals acquiring

breeding sites on a ‘first-come, first-served’ basis (i.e.

 

c

 

1

 

 

 

=

 

 

 

c

 

2

 

), the expression (1 

 

−

 

 exp(–

 

c

 

i

 

T

 

) )

 

x

 

i

 

 for the number

of  breeding sites acquired by species 

 

i

 

 simplifies to

xiN/(x1 + x2). Although it is not possible to write down

an explicit formula for T when c1 ≠ c2, we can still analyse

and simulate these models. Under these assumptions,

the progeny function fi for species i is:

eqn 3

The first term in these piecewise defined functions

corresponds to the situation in which there are more

breeding sites than individuals. Hence, all individuals

of  species i acquire a higher-quality breeding site in

which they produce βi progeny. The second term in

these piecewise defined functions corresponds to the

situation in which there are more individuals than

breeding sites. Hence, only xi(1 − exp(−ciT ) ) individuals

of species i acquire breeding sites.

If  the breeding sites are source sites for both species

(i.e. Ai + βiJi > 1 for i = 1, 2), then the system (generically)

admits only three equilibria, (0, 0), ( , 0) and (0, )

where . As the lack of  feasible

equilibria suggests, the coexistence of  both species is

(generically) impossible. Indeed, Appendix B proves

that if:

eqn 4

then species 1 competitively excludes species 2. Alter-

natively, if  the opposite inequality holds, then species 2

competitively excludes species 1. An interpretation of

this inequality is as follows: the species that at equilib-

rium can acquire newly introduced breeding sites at a

faster rate is competitively superior. In the case of species

acquiring breeding sites on a ‘first-come, first-served’

basis (i.e. c1 = c2), this rule of dominance simplifies to

the species that attains the higher equilibrium density is

competitively dominant.

Competition with a competitive refuge

The result of the preceding analysis is that species com-

peting for breeding sites in a homogeneous environ-

ment cannot coexist. It is well known that introducing

a competitive refuge for the inferior competitor can

mediate coexistence if  the inferior competitor can

maintain a positive initial growth rate in the competi-

tive refuge (see, e.g. Amarasekare & Nisbet 2001). The

novel issue we address here is whether competitive

refuges in which per-capita death rates always exceed

per-capita birth rates can mediate coexistence. To address

this issue, let species 1 be the superior competitor on

the higher-quality breeding sites (i.e. in a landscape

consisting only of higher-quality breeding sites, species

1 excludes species 2) and let species 2 have sole access

to the lower-quality breeding sites. To simplify things,

assume that individuals of both species acquire higher-

quality nesting sites on a ‘first-come, first-served’ basis

(i.e. c1 = c2).

As discussed in the previous section, the progeny

function for species 1 is:

eqn 5

On the other hand, as species 2 is assumed to exhibit an

ideal pre-emptive distribution, individuals attempt to

acquire lower-quality breeding sites only when all the

higher-quality sites are occupied. When this occurs, Nx2/

(x1 + x2) individuals of species 2 acquire higher-quality

breeding sites and the remaining x2 − Nx2/(x1 + x2) indi-

viduals of species 2 attempt to acquire the lower-quality

breeding sites. If  this latter number is less than Ñ, then

all these individuals acquire lower-quality breeding

sites or else only Ñ individuals do. Thus, the progeny

function for species 2 is:

eqn 6

If the higher-quality habitat is a source habitat for

both populations, then each species achieves a positive

f x x
x x x N

x cT x x Ni
i i

i i i
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1 2
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equilibrium in the absence of the other. For species 1, this

positive equilibrium is given by  = ψ1N where ψi =
βiJi/(1 − Ai) for i = 1, 2. The equilibrium  achieved

by species 2 in the absence of  species 1 is described in

Appendix C. An analysis of  this model reveals that

species 2 can invade the equilibrium  determined by

species 1 if  and only if:

eqn 7

i.e. a weighted sum of the intrinsic rates of growth of

species 2 in the two sites is greater than 1.

This inequality is always met when the competitive

refuge sites are source sites for species 2 (i.e. A2 + J222 > 1)

and also is met for a wide range of  parameter values

when the competitive refuge sites are sinks (Fig. 2). When

species 2 can invade, the ecological consequences of the

invasion depend on the number Ñ of  competitive

refuge breeding sites. When Ñ is below a critical thresh-

old  where φ = 22/(β2/ψ2 − β2/ψ1), both species

coexist about a globally stable equilibrium:

eqn 8

Because , the invasion of species 2 in

this case has no effect on the equilibrium number of

individuals occupying the landscape. On the other hand,

if  the number of competitive refuges sites exceeds ,

then the invasion of species 2 results in a competitive

reversal; species 2 competitively displaces species 1.

Moreover, the resulting invasion may increase or decrease

the equilibrium number of individuals.

Assuming that competitive refuges alter ecological

outcomes, we analyse two scenarios of how the equi-

librium abundances of both species vary as functions of

the number of lower-quality breeding sites. The first

scenario considers the effect of simply adding Ñ lower-

quality breeding sites to a landscape initially consisting

of N higher-quality breeding sites. This might occur

when previously unusable habitat becomes converted

to lower-quality habitat that can be utilized by one of the

species. In this case, the abundance ψ1N − φÑ of species

1 decreases linearly with Ñ until it is driven to extinc-

tion when Ñ ≥ ψ1N/φ. This linear decline of species 1 is

perfectly compensated by the linear increase of the

abundance φÑ of  species 2; the total abundance of both

species remains constant at ψ1N for Ñ ≤ ψ1N/φ. Follow-

ing the extinction of species 1, adding more lower-quality

sites to the landscape either results in a saturating piece-

wise linear increase of  species 2 when the competitive

refuge sites are sinks (Fig. 3a) or results in non-saturating

piecewise linear increase when the competitive refuge

sites are sources (Fig. 3b).

The second scenario considers converting Ñ of initially

N higher-quality breeding sites to lower-quality breed-

ing sites. Habitat conversion may be caused by or occur

in response to anthropogenic and environmental dis-

turbances. For instance, legislation with a goal of no net

loss of wetlands has led to the creation of wetlands to

replace destroyed natural wetlands (National Wetlands

Policy Forum 1988). The created wetlands are often

of lower quality than natural wetlands and not acces-

sible to all species in the natural wetlands. Our analysis

implies that, initially, conversion of higher-quality sites

to lower-quality sites results in a linear decrease in the

abundance ψ1(N − Ñ) − φÑ of  species 1 that is not

compensated by the linear increase of  the abundance

φÑ of  species 2. Beyond a critical level Ñ ≥ ψ1/(ψ1 + φ)

of habitat conversion, species 1 is competitively excluded.

Continuing conversion results in species 2 decreasing

in abundance ultimately to extinction if  the competitive

refuge sites are sinks or to a lower equilibrium abun-

dance if  the competitive refuge sites are sources

(Fig. 3c,d).

Competition in heterogeneous landscapes without 

refuges

The preceding analysis shows that the addition or

removal of  lower-quality competitive refuges, even if

they are sinks, can alter ecological outcomes by revers-

ing competitive dominance or mediating coexistence.

Because populations may compete for all available

breeding sites, we ask can sink habitats, more generally

lower-quality habits, alter ecological outcomes when

both competing species utilize them? Furthermore, are

the only altered outcomes coexistence or competitive

reversals?

To answer these questions, assume that both species

have access to N higher-quality breeding sites and Ñ
lower-quality breeding sites. Let ci (respectively, ci) denote

the rate that individuals from species i acquire a

higher-quality (respectively, lower-quality) breeding site.

x1*

x2*

x1*

(   )   (   )     A J A J2 2 2

1

2 2 2

1

1
1

1
1+ + + −







>β

ψ ψ
2

Fig. 2. Necessary and sufficient conditions for coexistence in

the competitive refuge model whenever the number of lower-

quality breeding sites is not too large. The parameter values

are A1 = A2 = 0·5, J1 = J2 = 0·5, and r = β1/β2 and 22 vary as

shown. For all these parameter values, the lower-quality

habitat is a sink habitat for both species.

φ/ *x1

( **, **)  ( *  , ).x x x Ñ Ñ1 2 1= − φ φ

x x x1 2 1**  **  *+ =

x1*/φ
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If  both species exhibit a pre-emptive distribution

and x1 + x2 > N, then (1 − exp(ciT ))xi individuals of

species i acquire higher-quality breeding sites where

T is the unique solution to Σi(1 − exp(−ciT ))xi = N. The

remaining Σi exp(−ciT ))xi individuals of both species

attempt to acquire lower-quality breeding sites. If  the

remaining number of individuals is less than Ñ, then all

remaining individuals acquire lower-quality breeding

sites. However, if  the remaining number of  individuals

is greater than Ñ, then the number of  low-quality

breeding sites acquired by species i is given by (1 −
exp(−ciT))exp(−ciT)xi where T is the unique solution

to Σi(1 − exp(−ciT))exp(−ciT )xi = Ñ. Thus, the progeny

function for species i is:

eqn 9

As in the previous models, if  the higher-quality breed-

ing sites are source sites for both species, then species i
achieves an unique positive equilibrium density  in

the absence of the other species. The invasion rates gi of

species i when the competing species is at equilibrium

determine three possible dynamics: coexistence if g1 > 1

and g2 > 1, displacement of  species 2 (respectively,

species 1) if  g1 > 1 and g2 < 1 (respectively, g2 > 1 and

g1 < 1) and a priority effect if  g1 < 1 and g2 < 1. In the

case of a priority effect, the species that establishes

itself  first prevents the establishment of its competitor.

In the special case that there are no competitive asym-

metries in the species abilities to acquire breeding sites

(i.e. c1 = c2 and c1 = c2), it is easily shown that generically

one species is dominant. Therefore, in the absence of

asymmetries, the inclusion of lower-quality breeding

sites can facilitate competitive reversals but, surpris-

ingly, not mediate coexistence. For instance, competi-

tive reversals can occur if  the lower-quality sites are

sources, or species 1 is dominant in the higher-quality

sites (i.e. ψ1 > ψ2 where ) and species

2 has an advantage in the lower-quality sites (i.e. 12 > 11

where ).

When there are competitive asymmetries in the species’

abilities to acquire nesting sites (i.e. c1 ≠ c2 or c1 ≠ c2),

Fig. 3. Equilibrium density of species 1 (dashed line) and species 2 (solid line) for the competitive refuge model as functions of

the number Ñ of  lower-quality breeding sites. In all 11 figures, A1 = A2 = 0·5, J1 = J2 = 0·5, β1 = 2·5, and β2 = 2·0. In (a) and (b),

lower-quality breeding sites are augmenting N = 100 higher-quality breeding sites. In (a), 22 = 0·4 and the lower-quality breeding

sites are sinks. In (b), 22 = 1·2 and the lower-quality breeding sites are sources. In (c) and (d), lower-quality breeding sites are

replacing higher-quality breeding sites, i.e. number of higher-quality breeding sites equals 100 − Ñ. In (c), 2 = 1·2. In (d), 2 = 0·75 and

the lower-quality breeding sites are sinks.
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the complexity of the invasion rates gi (Appendix D)

limits our analysis to numerical simulations. Figure 4

illustrates how ecological outcomes depend on competitive

asymmetries in the acquisition of breeding sites and the

availability of  sink breeding sites. These numerical

simulations show that the inclusion of sink habitats can

alter ecological outcomes only if  each species has a

competitive advantage in one of the habitat types and

when there are not too many sinks or too many source

sites. The inclusion of sinks alters ecological outcomes

in three ways. First, if  the ratio of sinks to source sites is

not too great, then sink habitats can mediate coexist-

ence (Fig. 4a,b). Secondly, if  the ratio of sink to source

sites is large and the competitive asymmetry in the two

habitats is not too great, there can be a priority effect in

which neither species can invade when rare (Fig. 4b–d).

Thirdly, sink-facilitated competitive reversals can occur

(Fig. 4b).

Discussion

We analyse the population dynamics of two species

competing for a finite number of breeding sites. We

prove that when this competition occurs in a homoge-

neous landscape, a simple rule of dominance determines

the outcome; the species that at equilibrium attains new

breeding sites at the fastest rate competitively displaces

the other species. This dominance rule is similar to the

R* rule for exploitative competition; the species that at

equilibrium suppresses the resource to the lower density

is competitively superior (Tilman 1982; Holt et al. 1994.

The presence of lower-quality breeding sites can alter

this ecological outcome by mediating coexistence,

reversing competitive dominance, or inducing a priority

effect in which competitive exclusion is contingent upon

initial conditions. Most notably, these altered outcomes

occur even when neither population in isolation can

persist on the lower-quality breeding sites, i.e. the lower-

quality breeding sites are sinks.

Lower-quality breeding sites mediate coexistence

provided that at least three conditions hold. First, the

species inferior with respect to the source sites has a

competitive advantage on the lower-quality sites. Sec-

ondly, there are competitive asymmetries in the species’

abilities to acquire breeding sites. The most extreme

form of this asymmetry occurs when the lower-quality

sites are competitive refuges for the inferior species.

Thirdly, there are some but not too many lower-quality

breeding sites. When lower-quality breeding sites can

mediate coexistence, there is a threshold effect. If  the

number of lower-quality sites lies below a threshold,

coexistence is mediated. If  the number of lower-quality

sites exceeds this threshold, a competitive reversal in

which the once inferior species displaces the previously

superior species or a priority effect occurs. In particular,

our study shows that fast-directed dispersal (i.e. in popu-

lations exhibiting an ideal pre-emptive distribution;

Pulliam 1988; Pulliam & Danielson 1991) can mediate

coexistence. In contrast, when dispersal is passive,

Amarasekare & Nisbet (2001) found that if  there is spa-

tial heterogeneity in competitive rankings across the

landscape, local coexistence can occur provided that

the dispersal rate of the overall inferior competitor

does not exceed a critical threshold.

Amarasekare & Nisbet (2001) showed that spatial

heterogeneity could mediate coexistence if  all patches

Fig. 4. Bifurcation diagrams for general model with Ai = 0·9, Ji = 0·1, βi = 2·0, 2i = 0·5, N = 100. Parameters Ñ, c = c1/c2 and c =
c1/c2 vary as shown.
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in the absence of competitive interactions are sources

for each of  the competing species. Our results show

that even spatial heterogeneity generated by sink sites

can mediate coexistence. This sink-mediated coexistence

provides an example of when two sink populations

coupled by dispersal make a source population. More

specifically, when the species superior on the source sites

is isolated and at equilibrium, restricting the inferior

species to either habitat results in a sink population.

Restricted to the sink sites, the inferior species perishes

by definition. Restricted to the source sites, the inferior

species is competitively displaced. However, by actively

dispersing between these two sink habitats, the inferior

species can invade and coexist with the superior spe-

cies. A different mechanism for the persistence of two

sink populations linked by dispersal has been described

by Jansen & Yoshimura (1998).

They considered a single population that can disperse

between two patches. One patch is a deterministic sink

in which the population exhibits a gradual steady decline.

The other patch is a stochastic sink, in which frequent

favourable periods are punctuated by large disturbances.

Coupling these habitats by passive dispersal promotes

persistence, the deterministic sink providing a refuge

from catastrophes and the stochastic sink providing

frequent opportunities for growth. Thus, coupled sink

populations may become source populations when spatial

heterogeneity is coupled with temporal heterogeneity

or is coupled with heterogeneity of species.

Our model makes several simplifying assumptions

that warrant further investigation. On the determinis-

tic front, the models assume that adult survivorship is

independent of the quality of the breeding site in which

they reside, species share habitat selection preferences,

there is no density dependence in reproductive success

after acquiring a breeding site and individuals have

equal pre-emptive abilities regardless of the breeding

site from which they came. The model also does not

account for the intrinsic discreteness of breeding sites

and individuals. For instance, a lattice version of our

model is presented in Appendix A. As illustrated by

comparing Fig. 5 to Fig. 4d, lattice effects are most pro-

nounced in parameter regimens (e.g. small number of

breeding sites) where our original models have a low

population abundance at the positive equilibrium. As in

these parameter regimens demographic stochasticity

may be pronounced, individual-based stochastic coun-

terparts of  our model may provide insights into how

competition in source–sink landscapes influences

coexistence and population persistence.

In conclusion, the use of source–sink theory in con-

servation biology has focused almost exclusively on

single-species dynamics and how sink sites modulate

population abundance and population persistence

times (Dias 1996; Fauth 2001; With & King 2001). As

species are often competing with each other, we have

shown that sink habitats can affect biodiversity. On

one hand, habitat heterogeneity provided by sinks

promotes biodiversity by mediating coexistence. On

the other hand, excessive conversion of source habitats

to sink habitats can decrease species richness. Because

habitat fragmentation may be rapidly converting

sources to sinks throughout the world, future work on

understanding how species interactions and the struc-

tures of source–sink mosaics influence biodiversity will

be critical.
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Appendix A: model derivation

In this Appendix we develop the breeding-site acquisi-

tion functions for competing species. To describe these

acquisition dynamics, let xi denote the number of indi-

viduals of species i that are competing for N breeding

sites, n(t) be the number of available breeding sites at

time t, yi(t) denote the number of individuals that have

not acquired a breeding site by time t, and ci the per-

capita rate at which species i acquire breeding sites.

We assume that initially there are more individuals than

breeding sites (i.e. N < x1 + x2). If we assume that species

acquire breeding sites at a rate proportional to their

abundance and upon acquiring a breeding site indi-

viduals do not attempt to acquire more breeding sites,

then we obtain the following linear differential equations:

eqn 10

Solving these partially coupled linear differential

equations yields yi(t) = xi exp(−cit) and n(t) =
N − Σi(1 −exp(−cit))xi. Because we have assumed that

x1 + x2 > N, there exists a unique T > 0 such that:

eqn 11

In the special case that c1 = c2 = c (i.e. ‘first-come, first-

served) we obtain:

whenever x1 + x2 > N.

Appendix B: homogeneous competition

In this Appendix, we analyse the spatially homo-

geneous model. We assume Ai + Jiβi > 1 for i = 1, 2 (i.e.

the habitat is a source for both species) and A1 + J1β1 ≠
A2 + J2β2. Solving for equilibria yields three: (0, 0),

 and  where . The

invasion rate of species i at the equilibrium determined

by the competing species j ≠ i is given by gi = Ai +
Jiβi(1 − exp(−ciTj)) where, where Tj is the unique

solution to . Solving for Tj

yields

eqn 12

dy

dt
c y y x

dn

dt
c y c y n N

i
i i i i    ( )  

      ( )  

= − =

= − − =
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Substituting this expression for Tj into gi = Ai + Jiβi(1 −
exp(−ciTj)) and simplifying yields:

eqn 13

Using this expression, one can show that g1 > 1 (respec-

tively, g2 > 1) if and only if 

(respectively, reverse inequality). Hence, g1 > 1 (respec-

tively, g2 > 1) if and only if g2 < 1 (respectively, g1 < 1).

Lemma 6·2 of Franke & Yakubu (1993) can be used to

prove that the invasion rate predictions extend to the

entire phase space, i.e. competitive exclusion occurs for

all positive initial conditions.

Appendix C: competitive refuge model

Let .

Assume that  ψi > 1 for i = 1, 2 (i.e. the main breeding sites

are sources) and 22 < β2. The competitive refuge model

has two non-trivial equilibria on the axes, namely 

and  where  and

eqn 14

We also have an equilibrium lying off the axes and given

by:

eqn 15

where . This interior equilibrium

lies in the positive quadrant if  and only if  ψ1 > ψ2 (spe-

cies 1 is superior on the common breeding sites) and

. These conditions are consistent with the

analysis of the species’ invasion rates. Evaluating the per-

capita growth rate of species 1 at the point  yields

species 1 invasion rate:

eqn 16

Evaluating the per-capita growth rate of species 1 at the

point  yields species 2 invasion rate:

eqn 17

Let us view g1 = g1(Ñ) as a function of  Ñ, because

we assumed that species 1 is competitively superior

on the higher-quality breeding sites (i.e. ψ1 > ψ2),

g1(0) = A1 + J1β1/ψ2 > 1. Moreover, g1(Ñ) is a non-

increasing function, and limÑ→∞g1(Ñ) = A1 < 1 if  the

lower-quality sites are sources (i.e. ψ2 > 1), or else equals

A1 + J1β1(1 − 12)/(ψ2 − 12). A little algebra reveals that

A1 + J1β1(1 −12)/(ψ2 − 12) < 1 if and only if g2 > 1. From

these observations, we arrive at two conclusions. First, if

g2 < 1, then g1(Ñ) > 1 for all Ñ > 0. Secondly, if g2 > 1, then

there exists a critical value of Ñ such that if Ñ is less than

this critical value g1 > 1 (i.e. coexistence), or else g1 < 1 (i.e.

competitive reversal). Assuming g2 > 1 and solving the

equation A1 + J1β1N/(ψ2N + 12Ñ ) yields that g2(Ñ ) ≤ 1

for . Notice that we have

recovered the two conditions that must be satisfied in

order for the interior equilibrium for this system to lie

in the positive quadrant. We may also solve N (ψ2 − 12)/

(1 − 12) = ψ2N + 12Ñ to find that the critical value of  Ñ
above which the invasion rate of species 1 is constant

(assuming the competitive refuge sites are sinks) is

Ñ** = N(ψ2 − 1)/(1 − 12).

To go from local to global conclusions about the

dynamics, we can use the results of Franke & Yakubu

(1993) and Smith & Thieme (2001). Whenever we

have g1 > 1 and g2 < 1 (respectively, g1 < 1 and g2 > 1),

Lemma 6·2 of Franke & Yakubu (1993) implies that

competitive exclusion of species 2 (respectively, species

1) occurs for all positive initial conditions. On the other

hand, when g1 > 1 and g2 > 1, Theorem 2 of Smith &

Thieme (2001) implies that the unique positive equilib-

rium is globally stable.

Appendix D: invasion rates for general model

Let  and  for i =
1, 2. Solving for the non-trivial boundary equilibria

 and  of the general model yields:

eqn 18

To determine the invasion rates of  the missing species

at these boundary equilibria, we solve (1 − exp(−ciT ))xi

= 0 for T at the equilibria . This yieldsTi =
ln . On the other hand, when ,

solving  for T yields.

. Using these quantities, we

can express the invasion rate of species i at the equilib-

rium determined by its competitor as:

eqn 19

Appendix E: a discrete version of the competitive 

refuge model

To account for discreteness of individuals and breeding

sites, we describe the discrete version of the competitive

refuge model. This model discretizes (1) the number of
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breeding sites acquired by either species, (2) the number

of  juveniles that make it to the next breeding season

and (3) the number of  adults that survive to the next

breeding season. We let x denote the floor of  the

number x.

eqn 20
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