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ON ALLEE EFFECTS IN STRUCTURED POPULATIONS

SEBASTIAN J. SCHREIBER

(Communicated by Carmen C. Chicone)

Abstract. Maps f(x) = A(x)x of the nonnegative cone C of Rk into itself are

considered where A(x) are nonnegative, primitive matrices with nondecreasing
entries and at least one increasing entry. Let λ(x) denote the dominant eigen-
value of A(x) and λ(∞) = supx∈C λ(x). These maps are shown to exhibit a
dynamical trichotomy. First, if λ(0) ≥ 1, then limn→∞ ‖fn(x)‖ = ∞ for all
nonzero x ∈ C. Second, if λ(∞) ≤ 1, then limn→∞ fn(x) = 0 for all x ∈ C.
Finally, if λ(0) < 1 and λ(∞) > 1, then there exists a compact invariant hy-
persurface Γ separating C. For x below Γ, limn→∞ fn(x) = 0, while for x
above, limn→∞ ‖fn(x)‖ = ∞. An application to nonlinear Leslie matrices is
given.

1. Introduction

Difference equation models for single species population dynamics are of the form

(1) x′ = a(x)x

where x is a nonnegative real representing the current population density, a(x) is
the per-capita growth rate of the population, and x′ is the population density in
the next generation. When resources are abundant, the per-capita growth rate
a(x) can be an increasing function due to predator saturation, antipredator vigi-
lance or aggression, cooperative predation or resource defense, increased availability
of mates, and conspecific enhancement of reproduction [3, 8, 9]. For example, Has-
sell [4] in modeling a population subject to predation by a satiating generalist uses
a(x) = λ exp(−α/(1 + βx)) where λ is the geometric growth rate of the population
in the absence of predation, α determines the maximum predation rate, and β de-
termines how quickly the predators satiate. Models of this type are easily seen to
exhibit a trichotomy of dynamical behaviors:

• If a(0) ≥ 1, then limn→∞ f
n(x) =∞ for all x > 0.

• If limx→∞ a(x) ≤ 1, then limn→∞ f
n(x) = 0 for all x ≥ 0.

• If limx→∞ a(x) > 1 (possibly infinite) and a(0) < 1, then there exists a
positive equilibrium x∗ such that limn→∞ f

n(x) = 0 for all x < x∗ and
limn→∞ f

n(x) =∞ for all x > x∗.
The last of these dynamical behaviors corresponds to what is known as a (strong)
Allee effect—there exists a critical density below which extinction is inevitable [8].
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The goal of this article is to extend the dynamical trichotomy from one-
dimensional maps for unstructured populations to k-dimensional maps for struc-
tured populations (i.e., populations divided up into subpopulation via age, stage,
or space). The remainder of the article is structured as follows. In section 2, we
present the multi-dimensional analogs of (1), introduce basic definitions, and state
the main result. The main result is proven in section 3, and an application to
age-structured populations is given in section 4.

2. Main result

Let C denote the nonnegative cone of Rk. Given x = (x1, . . . , xk) and y =
(y1, . . . , yk) in C, we write x ≤ y if xi ≤ yi for all i, x < y if x ≤ y and x 6= y,
and x� y if xi < yi for all i. Given two k × k matrices, A and B, whose (i, j)-th
entries are given by aij and bij , we write A ≤ B if aij ≤ bij for all i and j, A < B
if A ≤ B and A 6= B, and A � B if aij < bij for all i and j. Let f : C → C be
given by

f(x) = A(x)x
where A(x) are k × k nonnegative matrices whose (i, j)-th entries are given by
aij(x). About A(x) we make the following assumptions:

A1: A(0) is primitive (i.e., there exists a positive integer n such that all the
entries of A(0)n are positive),

A2: x 7→ A(x) is continuously differentiable,
A3: A(x) ≤ A(y) whenever x ≤ y, and
A4: there exist i, j, l such that for all x ∈ C, ∂aij

∂xl
(x) > 0.

Define the limiting matrix A(∞) with entries aij(∞) by

aij(∞) = sup
x∈C

aij(x).

Some of the entries of this matrix may be ∞. Assumptions A1 and A3 imply
that A(x) is primitive for all x ∈ C. Hence (see, e.g., [7]), there exists a dominant
eigenvalue λ(x) > 0. Define λ(∞) to be the dominant eigenvalue of A(∞) if all the
entries of A(∞) are finite, and ∞ otherwise. Given a point x ∈ C, let

‖x‖ = max{x1, . . . , xk}, min(x) = min{x1, . . . , xk}.
Our main result is:

Theorem 1. f(x) has three possible dynamics:
(1) If λ(∞) ≤ 1, then limn→∞ f

n(x) = 0 for any x ∈ C.
(2) If λ(0) ≥ 1, then limn→∞min(fn(x)) =∞ for any nonzero x ∈ C.
(3) If λ(0) < 1 and λ(∞) > 1, then there exists a continuously differentiable

invariant hypersurface Γ that separates C into two pieces. For points x
below Γ (i.e., x such that x < y for some y ∈ Γ),

lim
n→∞

fn(x) = 0.

Alternatively, for points x above Γ (i.e., x such that x > y for some y ∈ Γ),

lim
n→∞

min(fn(x)) =∞.

Remark. A similar result can be proven for ordinary differential equations of the
form dx

dt = A(x)x where A(x) are k × k matrices (not necessarily nonnegative),
exp(A(0)) is primitive, and assumptions A2–A4 hold.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON ALLEE EFFECTS IN STRUCTURED POPULATIONS 3049

3. Proof of main result

The proof of Theorem 1 relies heavily on the fact that f(x) is a monotone
map (i.e., f(x) ≥ f(y) whenever x ≥ y). In fact, the following lemma implies
that there exists a positive integer N such that fN(x) is strongly monotone (i.e.,
fN(x)� fN (y) whenever x > y).

Lemma 1. A(x) has the following properties:
(1) There exists a positive integer N such that the entries of A(0)N are all

positive and A(x)N � A(y)N whenever x� y.
(2) λ(x) ≥ λ(y) whenever x ≥ y.
(3) λ(x) > λ(y) whenever x� y .

Proof. Since A(0) is primitive, there exists a positive integer L such that all the
entries of A(0)L are positive. Set N = 3L. To see why this gives the desired N ,
assume x � y. Assumptions A3 and A4 imply that A(x)L > A(y)L > A(0)L. In
particular, all the entries of A(y)L are positive and one of the entries of A(x)L is
greater than the corresponding entry of A(y)L. It follows that all the entries of a
row and a column of A(x)2L are greater than the corresponding entries of A(y)2L.
Iterating one more time yields that A(x)3L � A(y)3L.

Assume x ≥ y. Since A(x) ≥ A(y),

λ(x) = lim
n→∞

‖A(x)n‖ 1
n ≥ lim

n→∞
‖A(y)n‖ 1

n = λ(y).

Assume x� y. Since A(x)N � A(y)N , there exists an ε > 0 such that A(x)N ≥
(1 + ε)NA(y)N . Thus λ(x) ≥ (1 + ε)λ(y). �

Assume λ(∞) ≤ 1. Choose an x ∈ C. Since λ(∞) ≤ 1 and A(∞) is primitive,
the Perron-Frobenius Theorem (see, e.g., [7]) implies that there exists a constant
c ≥ 1 such that ‖A(∞)n‖ ≤ c for all n ≥ 0. Since A(y) ≤ A(∞) for all y ∈ C,

‖fn(x)‖ = ‖A(fn−1(x)) . . . A(x)x‖ ≤ ‖A(∞)nx‖ ≤ c‖x‖
for all n ≥ 0. Let z = c‖x‖(1, 1, . . . , 1). Lemma 1 implies that λ(z) < λ(∞) ≤ 1.
Since fn(x) ≤ z for all n ≥ 0, we have that A(fn(x)) ≤ A(z) for all n ≥ 0. The
Perron-Frobenius Theorem implies that limn→∞ ‖A(z)nv‖ 1

n = λ(z) for all v > 0.
Therefore,

lim sup
n→∞

‖fn(x)‖1/n = lim sup
n→∞

‖A(fn−1(x)) . . . A(x)x‖1/n ≤ λ(z) < 1.

In particular, limn→∞ f
n(x) = 0.

Next, assume λ(0) ≥ 1. Choose x � 0. Since λ(0) ≥ 1 and A(0) is primitive,
the Perron-Frobenius Theorem implies that there exists a constant c > 0 such that
A(0)nx ≥ c x for all n ≥ N . Since A(y) ≥ A(0) for all y ∈ C,

fn(x) = A(fn−1(x)) . . . A(x)x ≥ A(0)nx ≥ c x
for all n ≥ N . By Lemma 1, λ(c x) > λ(0) ≥ 1. Since fn(x) ≥ c x for all n ≥ N ,
we have A(fn(x)) ≥ A(c x) for all n ≥ N . The Perron-Frobenius Theorem implies
that limn→∞min(A(c x)nv)

1
n = λ(c x) for all v ∈ C. Hence

lim inf
n→∞

min(fn(x))1/n = lim inf
n→∞

min(A(fn−1x) . . . A(x)x)1/n ≥ λ(c x) > 1.

In particular, limn→∞min(fn(x)) =∞.
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Finally, assume that λ(∞) > 1 and λ(0) < 1. Since λ(0) < 1, 0 is an attracting
fixed point with an open basin of attraction:

B(0) = {x ∈ C : lim
n→∞

fn(x) = 0}.

On the other hand, the following lemma implies that B(0) is bounded.

Lemma 2. Assume λ(0) < 1 and λ(∞) > 1. Then there exists an M > 0 such
that

lim
n→∞

min(fn(x)) =∞

whenever ‖x‖ ≥M .

Proof. The definition of λ(∞) and the assumption that λ(∞) > 1 imply that there
exists an M1 such that λ(x) > 1 whenever min(x) ≥ M1. Let z = M1(1, . . . , 1).
Since λ(z) > 1, the Perron-Frobenius Theorem implies that there exist an ε > 0
and L > 0 such that An(z)x ≥ (1 + ε)nx whenever x ∈ C and n ≥ L. Choose
1 > δ > 0 such that all entries of A(0)N are greater than δ and the maximum entry
of each row in A(0) is greater than δ. (Note: A(0) being primitive implies that no
row vector of A(0) is the zero vector.) Define M = M1

δL+1 . Let x ∈ C be such that
‖x‖ ≥M . Our choice of x and δ imply that for i = 0, 1, . . . , L,

fN+i(x) = A(fN+i−1(x)) . . . A(x)x

≥ A(0)N+ix ≥ ‖x‖δi+1(1, . . . , 1)

≥ M1

δL−i
(1, . . . , 1) ≥M1(1, . . . , 1) = z.

Since f i(fNx) ≥ z for i = 0, . . . L, our choice of L implies that

fL+N(x) = A(fL−1(fN (x))) . . . A(f(fN (x)))A(fN (x))fN (x)

≥ A(z)Lz ≥ (1 + ε)Lz.

Thus, we may inductively conclude that

fn+N (x) ≥ (1 + ε)nz

for n ≥ L. In particular, limn→∞min(fn(x)) =∞. �

The boundary ∂B(0) of B(0) is a nonempty compact invariant set for f . Conse-
quently, work of Takáč [10, Prop. 1.3] implies that there exists an invariant Lipschitz
hypersurface Γ containing ∂B(0) that separates C into two pieces. In fact, work of
Tereščák [11] implies that Γ is a continuously differentiable manifold (see also [1],
in which this result is proven in the finite-dimensional case when f is C2).

Next, we prove that Γ is a repellor: there exists a neighborhood U of Γ such that
for all x ∈ U \Γ, fn(x) /∈ U for all n sufficiently large. Since Γ is compact and does
not contain the origin, there exists a constant c > 0 such that c(1, 1, . . . , 1)� x�
(1, 1, . . . , 1)/c for all x ∈ Γ. Since limn→∞ c1/n = 1 and Γ is invariant,

(2) lim
n→∞

‖A(fn−1(x)) . . . A(x)x‖1/n = lim
n→∞

‖fn(x)‖1/n = 1

for all x ∈ Γ. We need the following result of Ruelle.

Proposition 1 ([5, Prop. 3.2]). Let X be a compact metric space, f : X → X a
continuous map, and T a continuous map from X to the space of k×k nonnegative
primitive matrices. Then there exist a continuous T -invariant splitting E ⊕ F of
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X ×Rk and constants α < 1 and K ≥ 0 such that, for all x ∈ X,
• F (x) is one-dimensional and contained in C = {y ∈ Rk : y � 0 or y �

0 or y = 0},
• E(x) \ {0} is contained in the interior of the the complement of C, and
• for all unit vectors v ∈ E(x) and w ∈ F (x),

‖T (fn−1(x)) . . . T (x)v‖ ≤ Kαn‖T (fn−1(x)) . . . T (x)w‖.

Ruelle’s result applied to T = A and (2) implies

(3) lim
n→∞

‖A(fn−1(x)) . . . A(x)v‖1/n = 1

for all x ∈ Γ and nonzero v ∈ C. By the chain rule, the derivative Df(x) of f(x)
equals

Df(x) = A(x) +DA(x)x.

A3 implies that all the entries of DA(x) are nonnegative. A4 implies that DA(x)
contains at least one positive entry for all x ∈ C. The arguments used to prove
Lemma 1 imply that

DfN(x) = Df(fN−1(x)) . . . Df(f(x))Df(x)� A(fN−1(x)) . . . A(f(x))A(x).

Compactness and invariance of Γ imply that there exists an ε > 0 such that

Dfn(x) ≥ (1 + ε)nA(fn−1(x)) . . . A(f(x))A(x)

for all x ∈ Γ and n ≥ N . Equation (3) implies

(4) lim inf
n→∞

‖Dfn(x)v‖1/n ≥ 1 + ε

for all x ∈ Γ and nonzero v ∈ C. Proposition 1 applied to T = Df and X = Γ
yields a Df -invariant splitting E ⊕ F in which E is the tangent bundle to Γ and
F is a one-dimensional vector bundle transverse to Γ. Now consider the following
theorem.

Theorem 2 ([6, Thm. 1]). Let f : X → X be a continuous map of a compact
metric space X. If Fn : X → R is a sequence of continuous and subadditive
functions (i.e., Fn+m(x) ≤ Fn(x) + Fm(fnx) for all n,m ≥ 1 and x ∈ Γ), then

sup
x∈Γ

lim sup
n→∞

Fn(x)
n

= inf
n≥1

1
n

sup
x∈Γ

Fn(x).

This theorem and equation (4) applied to X = Γ and Fn(x) = − ln ‖DfL(x)v‖
imply that there exists L > 0 such that

‖DfL(x)v‖ ≥ (1 + ε/2)L‖v‖ for v ∈ F (x), x ∈ Γ.

It follows that Γ is a repellor: there exists a neighborhood U of Γ such that for all
x ∈ U \ Γ we have fn(x) /∈ U for all n sufficiently large.

To complete the proof of the theorem, it suffices to show that if x � Γ, then
limn→∞min(fn(x)) = ∞ and if x � Γ, then limn→∞ fn(x) = 0. We will prove
the former statement, since the latter statement is proven in an analogous manner.
Suppose x� Γ. Then there exists a y ∈ Γ such that x� y. Since Γ is a repellor,
there exists an m such that fn(x) /∈ U for all n ≥ m. Compactness of Γ implies
there exists a δ > 0 such that for all n ≥ m, one entry of A(fnx) is at least a
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factor (1 + δ) larger than the corresponding entry of A(fny). The arguments used
to prove Lemma 1 imply that there exists an ε > 0 such that

A(fn+N (x)) . . . A(fn+1(x)) ≥ (1 + ε)NA(fn+N (y)) . . . A(fn+1(y))

for all n ≥ m. Since y ∈ Γ, (2) implies

lim sup
n→∞

min(fn(x))1/n = lim sup
n→∞

min(A(fn−1(x))...A(x)x)1/n

≥ lim sup
n→∞

(1 + ε)min(A(fn−1(y))...A(y)x)1/n = 1 + ε.

In particular, limn→∞min(fn(x)) =∞.

4. Application to age-structured models

Consider a population that consists of k distinct stages. Let x = (x1, . . . , xk)
denote the vector of the stage densities. A standard model (known as a nonlinear
Leslie matrix model [2]) for this population is given by

A(x) =


0 f2(x) f3(x) . . . fk−1(x) fk(x)

s1(x) 0 0 . . . 0 0
0 s2(x) 0 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . sk−1(x) sk(x)


where fi(x) and si(x) are functions from C to [0,∞) and (0, 1) respectively. fi(x)
represents the average number of progeny produced from an individual in stage
i. si(x) is the fraction of individuals in stage i that make it to stage i + 1. An
important quantity associated with A(x) is the reproductive value R(x) of a stage
1 individual:

R(x)=s1(x)f2(x)+· · ·+s1(x) . . . sk−2(x)fk−1(x)+s1(x) . . . sk−1(x)fk(x)/(1−sk(x)).

Corollary 1. Assume that
• x 7→ si(x) and x 7→ fi(x) are continuously differentiable,
• si(0) > 0 for 1 ≤ i ≤ k and fi(0) > 0 for some i ≥ 2,
• si(y) ≥ si(x) and fi(y) ≥ fi(x) whenever x ≥ y, and
• there exist i and j such that either ∂si

∂xj
(x) > 0 for all x ∈ C or ∂fi

∂xj
(x) > 0

for all x ∈ C.
Then:

• If R(0) ≥ 1, then limn→∞min(fn(x)) =∞ for all nonzero x ∈ C.
• If R(∞) ≤ 1, then limn→∞ f

n(x) = 0 for all x ∈ C.
• If R(0) < 1 and R(∞) > 1, then there exists a continuously differentiable

invariant hypersurface Γ that separates C into two pieces. For points x
below Γ,

lim
n→∞

fn(x) = 0.

Alternatively, for points x above Γ,

lim
n→∞

min(fn(x)) =∞.

Functions that satisfy the assumptions of this corollary include si(x) =
exp(−b/(1 + β1x1 + · · ·+ βkxk)) representing the fraction of individuals in stage i
that escape predation from a satiating generalist predator.
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Proof. The assumptions of the corollary ensure that A1–A4 are satisfied. To apply
Theorem 1, it suffices to show that λ(x) > 1 (resp. λ(x) < 1) if and only if R(x) > 1
(resp. R(x) < 1). The characteristic polynomial of A(x) is given by

(−λ)k−1(sk − λ)− s1f2(−λ)k−3(sk − λ) + s1s2f3(−λ)k−4(sk − λ) + . . .

+(−1)ks1s2 . . . sk−2fk−1(sk − λ) + (−1)k+1s1 . . . sk−1fk.

Setting this equal to zero and rearranging terms (including a division by sk − λ,
which is permissible since the dominant eigenvalue of A(x) is > sk) yields that the
dominant eigenvalue λ = λ(x) of A(x) must satisfy

1 = s1f2/λ
2 + s1s2f3/λ

3 + · · ·+ s1 . . . sk−2fk−1/λ
k−1

+ s1 . . . sk−1fk/(λk−1(λ− sk)).

Since λ(x) > sk and the right-hand side of (5) is a decreasing function of λ for
λ > sk, we get that λ(x) > 1 (resp. λ(x) < 1) if and only if R(x) > 1 (resp.
R(x) < 1). �
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