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There is an emerging consensus that parasitoids are limited by the number of eggs which they can lay as
well as the amount of time they can search for their hosts. Since egg limitation tends to destabilize host–
parasitoid dynamics, successful control of insect pests by parasitoids requires additional stabilizing
mechanisms such as heterogeneity in the distribution of parasitoid attacks and host density-dependence.
To better understand how egg limitation, search limitation, heterogeneity in parasitoid attacks, and
host density-dependence influence host–parasitoid dynamics, discrete time models accounting for
these factors are analyzed. When parasitoids are purely egg-limited, a complete anaylsis of the host–
parasitoid dynamics are possible. The analysis implies that the parasitoid can invade the host system
only if the parasitoid’s intrinsic fitness exceeds the host’s intrinsic fitness. When the parasitoid can
invade, there is a critical threshold, CV ∗ > 1, of the coefficient of variation (CV ) of the distribution
of parasitoid attacks that determines that outcome of the invasion. If parasitoid attacks sufficiently
aggregated (i.e., CV > CV ∗), then the host and parasitoid coexist. Typically (in a topological sense),
this coexistence is shown to occur about a periodic attractor or a stable equilibrium. If the parasitoid
attacks are sufficiently random (i.e. CV < CV ∗), then the parasitoid drives the host to extinction.When
parasitoids are weakly search-limited as well as egg-limited, coexistence about a global attractor occurs
even if CV < CV ∗. However, numerical simulations suggest that the nature of this attractor depends
critically on whether CV < 1 or CV > 1. When CV < 1, the parasitoid exhibits highly oscillatory
dynamics. Alternatively, when parasitoid attacks are sufficiently aggregated but not overly aggregated
(i.e. CV > 1 but close to 1), the host and parasitoid coexist about a stable equilibrium with low host
densities. The implications of these results for classical biological control are discussed.

Keywords: Egg limitation; Search limitation; Host–parasitoid interactions; Biological control; Spatial
heterogeneity; Permanence

1. Introduction

Parasitoids are organisms, typically wasps and flies, whose young develop on and eventually
kill their hosts. Despite their diminutives size, parasitoids are an incredibly successful life-
form that account for 10% or more of metazoan species. Moreover, parasitoids have been
extremely successful in suppressing the abundance of insect pests. To better understand the
basis for their success, models of host–parasitoid interactions have been studied extensively.
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Traditionally, these models have assumed that the parasitoids are limited primarily by their
ability to locate hosts [1–8]. This assumption, however, neglects the fact that parasitoids may
be limited by the number of eggs available for oviposition. In the past decade, there has been
an emerging consensus that parasitoids can be limited by egg supply as well as time available
for locating hosts [9–13]. Reflecting this consensus, several theoretical studies have exam-
ined the combined effects of egg limitation and search limitation on host–parasitoid dynamics
[9, 13–15]. While providing key insights, these studies assumed that the hosts exhibit exponen-
tial growth in the absence of the parasitoids. Moreover, they focused on equilibrium stability.
Since all host populations experience some level of intraspecific density-dependence and host–
parasitoid populations may exhibit oscillatory behavior, I analyze the global dynamics of a
general class of host–parasitoid models that account for search limitation, egg limitation, and
host density-dependence.

All parasitoids experience egg limitation to some degree [9–12]. This egg limitation comes
in a variety of forms. Synovigenic parasitoids which continuously produce egg over their
lifetime experience egg limitation whenever the number of hosts encounter in a day exceeds
their daily production of eggs. For instance, in a study, Heimpel and Rosenheim [10] caught
and dissected 270 synovigenic parasitoids of the species Aphelinidae aonidiae. They found
18% of the dissected individuals had an egg load of zero and, consequently, were extremely
egg-limited. At the other end of the spectrum, pro-ovigenic parasitoids which are born with
a fixed complement of eggs experience egg limitation whenever the number of hosts they
encounter in their lifetime exceeds their complement of eggs. Pro-ovigenic species appear to
be rare. Javis et al. [11] found that only 12 out of 683 parasitoid species are pro-ovigenic. The
remaining 626 species were classified as synovigenic. However, amongst these synovigenic
species, there was considerable variability in the fraction of mature eggs that were produced
after their emergence from the host. Hence, most species lie between the extremes of emerging
with a complete complement of mature eggs and emerging with no mature eggs.

Since hosts and parasitoids tend to have synchronized generations in seasonal environments,
their dynamics are often modeled with difference equations [3, 16]. An important component
of these difference equation is the host encounter rate E, which describes the average number
of attacks or parasitic encounters per host. Based on the foundational work of Nicholson and
Bailey [17], studies of host–parasitoid models traditionally assume that the encounter rate only
depends on the density of the parasitoid [1–8, 18]. This assumption, however, neglects the fact
that at higher host densities, parasitoids are more likely to be egg-limited and, consequently,
less likely to attack hosts. If one takes a broad view that egg limitation is a form of predator
saturation, then Rogers [15] was the first to consider egg limitation by translating Holling’s
type II functional response to a host encounter rate. Analyzing Roger’s model, May and
Hassell [14] found that egg limitation tends to destabilize host–parasitoid interactions. It was
not until two decades later that the interaction of this destabilizing factor with a stabilizing
factor, heterogeneity in the distribution of parasitoid attacks, was considered. Studying models
without host self-regulation, Getz and Mills [9] found that stability of the host–parasitoid
equilibrium requires parasitic attacks to be sufficiently aggregated and the intrinsic fitness of
the parasitoid to exceed the intrinsic fitness of the host. In contrast, May [4] found in models
without egg limitation that stability only requires parasitic attacks to be sufficiently aggregated.
Getz and Mills [9, p. 341] concluded ‘our analysis leads us to question whether the assumption
that parasitoid encounter rates are determined purely by limitations in searching efficiency . . .

should underpin more elaborate discrete time host–parasitoid models that include, for example,
interference competition or host self-regulation.’

Since host dynamics are typically self-regulated and this self-regulation can be stabilizing,
I develop and analyze a discrete time model of host–parasitoid interactions that accounts for
search limitation, egg limitation, heterogeneity in the distribution of parasitoid attacks, and
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host density-dependence. The model is presented in section 2. In section 3, I analyze the
model when the parasitoids are egg-limited but not search-limited. The rationale for looking
at this extreme is twofold. First and foremost, an analysis of this case allows one to see how
egg limitation, in and of itself, influences host–parasitoid dynamics and thereby provides a
natural counterpart to pre-existing theory which assume parasitoids are purely search-limited.
Second, these models are analytically quite tractable and, consequently, their global dynamics
can be much better understood than other host–parasitoid models. In section 4, I investigate
the combined effects of search limitation and egg limitation. In particular, a characterization
of global coexistence is proven. The proofs of all the results are relegated to the Appendix.
Section 5 discusses the implications of these results for classical biological control.

2. The model

The discrete time model describes the dynamics of host–parasitoid populations with synchro-
nized generations. The host of density H is subject to parasitism by a parasitoid of density P .
The fraction g(E) of hosts escaping parasitism depends on the host encounter rate E, a func-
tion of host and parasitoid density that is described in further detail below. The fraction of hosts
escaping intraspecific density-dependent mortality is f (N). Intraspecific density-dependent
mortality is assumed to precede mortality due to parasitism (see, e.g. [5, 19, 20]). One interpre-
tation of this assumption is that the parasitoids are koinobionts. Hence, the host continues to
develop after being parasitized and experiences density-dependent mortality (via the survival
function f (·)) independent of parasitism. Hosts escaping parasitism and density-dependent
mortality produce on average λ progeny that survive to the next generation. Parasitized hosts
that escape density-dependent mortality produce on average θ parasitoids that survive to the
next generation. Under these assumptions, the model is given by

N ′ = λNf (N)g(E)

P ′ = θNf (N)(1 − g(E)), (1)

where N ′ and P ′ are the densities of the host and parasitoid, respectively, in the next generation.
The state space for the host–parasitoid dynamics is R2+ = {(N, P ) ∈ R2 : N ≥ 0, P ≥ 0}.

To complete the model, it is necessary to specify the density-dependent survivorship function
f (N), the encounter rate function E, and the escape function g. Throughout this article, I
assume that

A1: f is a continuously differentiable, decreasing, positive function such that f (0) = 1 and
limn→∞ f (N) = 0.

Survivorship functions that satisfy assumptionA1 include the generalized Beverton–Holt func-
tion f (N) = 1/(1 + αNβ) with α > 0 and β > 0, the Ricker functions f (N) = exp(−αN)

with α > 0, and the Hassell function f (N) = 1/(1 + αN)β . To account simultaneously for
search limitation and egg limitation, I follow the approach of Rogers [15] and define the
average host encounter rate as

E = αP

1 + αbN
,

where α is the searching efficiency of the parasitoid and b corresponds to the handling time
or egg limitation of the parasitoid. For parsimony, I rewrite this average encounter rate as

E = P

a + bN
, (2)
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where a = 1/α. One can view a as a measurement of search limitation. When there is no egg
limitation (i.e. b = 0), the encounter rate reduces to the classical Nicholson–Bailey search-
limited encounter rate of E = P/a. Alternatively, when there is no search limitation (i.e. a =
0), the encounter rate reduces to the Thompson model E = P/(bN) of egg-limited encounter
rates [20, 21]. If eggs are randomly laid on hosts, then the fraction of hosts, then the fraction
of hosts escaping parasitism is exp(−E). More generally, the Poisson escape term exp(−E)

can be viewed as a limiting case of the negative binomial escape term (1 + E/k)−k as k ↑ ∞.
This negative binomial escape function is commonly used to model non-random or aggregated
parasitism events [3, 4, 9, 19]. In particular, 1/k can be interpreted as the coefficient of variation
squared (CV 2) of the host encounter rate [22]. Consequently, larger values of k correspond
to parasitic attacks being more evenly distributed across the hosts, while smaller values of k

correspond to parasitoid attacks being aggregated on fewer hosts. To allow for this continuum
of possibilities, I assume throughout this article that

A2: g(E) = (1 + E/k)−k and E = P/(a + bN) with k > 0 (possibly ∞), a ≥ 0,
and b ≥ 0.

For ease of exposition, I write k = ∞ to refer to the Poisson escape function. The most
important feature of escape function for the analysis is that 1/g is a concave function when
k < 1 and 1/g is a convex function when k > 1.

3. Egg-limited dynamics

When the parasitoids are egg-limited but not search-limited (i.e. a = 0 and b > 0), the model
can be analyzed rather completely. The key to this analysis is the change of variables y1 = N

and y2 = P/N . With respect to this change of variables, equation (1) with a = 0, b > 0
partially decouples

y ′
1 = λy1f (y1)g(y2)

y ′
2 = θ

λ
((1 + y2/(bk))k − 1), (3)

where y ′
i is the value of yi in the next generation. An important quantity associated with these

equations is

y∗
2 = max

{
y2 : θ

λ
((1 + y2/(bk))k − 1) = y2

}
which exists whenever k 	= 1. The quantity y∗

2 corresponds to the largest equilibrium ratio of
parasitoids to hosts. Using this change of variables, I previously proved the following theorem
[20].

THEOREM 3.1 Assume a = 0 and b > 0. Then equation (1) exhibits the following dynamics:
Host failure: If λ < 1, then

lim
n→∞(Nn, Pn) = (0, 0)

whenever N0 ≥ 0 and R ≥ 0.
Parasitoid failure: If λ > 1, k < 1, and θ/b < λ, then there exist M > m > 0 such that

lim
n→∞ Pn = 0 and M ≥ Nn ≥ m f or n sufficiently large

whenever N0 > 0 and P0 > 0.
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Coexistence: If λg(y∗
2 ) > 1, θ/b > λ and k < 1, then there exist M > m > 0 such that

M ≥ Nn ≥ m M ≥ Pn ≥ m

whenever N0 > 0, P0 > 0, and n is sufficiently large.
Unconditional parasitoid-driven extinction: If k > 1, θ/b > λ > 1 or k < 1, λg(y∗

2 ) <

1 < λ, then

lim
n→∞(Nn, Pn) = (0, 0)

whenever N0 > 0 and P0 > 0.
Conditional parasitoid-driven extinction: If k > 1 and θ/b, then there exist M > m > 0
such that

lim
n→∞(Nn, Pn) = (0, 0)

whenever P0/N0 > y∗
2 and

lim
n→∞ Pn = 0 and M ≥ Nn ≥ m for n sufficiently large

whenever 0 < P0/N0 < y∗
2 .

Theorem 3.1 implies that parasitoid can invade the host system only if its intrinsic fitness
θ/b exceeds the intrinsic fitness λ of the host. This invasion can result in coexistence or over-
exploitation of the host.Which outcome occurs when is discussed further in the next subsection.
When there is more information about the density-dependent survivorship function f (N), it is
possible to provide much stronger results about the dynamical nature of this coexistence. For
instance, if density-dependent survivorship of the host is given by the Beverton–Holt function
f (N) = 1/(1 + αN) with α > 0, then coexistence implies convergence to a globally stable
equilibrium: N∗ = (λg(y∗

2 ) − 1)/α and P ∗ = y∗
2N∗. In general, however, the dynamics of the

host can be quite complex, e.g. exhibit periodic and chaotic dynamics. Since the host–parasitoid
dynamics with a = 0 are asymptotic to the host’s dynamics, the host–parasitoid dynamics can
be equally complicated. Despite the possibility of chaotic attractors, the following result is
proved in the Appendix. To state this result, given a point x ∈ R2+ and a finite set O ⊂ R2+
define dist(x, O) = maxy∈O |x − y| to be the distance between the point and the set.

THEOREM 3.2 Assume that k < 1 and f (N) = exp(−αN) is the Ricker survivorship function
with α > 0. Then there exists an open and dense set of parameters (λ, θ, b) for which there
exists a periodic orbit O (possibly of period 1) such that solutions to (1) satisfy

lim
n→∞ dist((Nn, Pn), O) = 0

for an open set of initial conditions (N0, P0) with full Lebesgue measure.

Theorem 3.2 implies that for ‘most’ parameters (in a topological sense) and ‘most’ initial
conditions (in a topological and measure theoretic sense), the host parasitoid dynamics con-
verge either to an equilibrium or a periodic motion. Similar results can be proven for the
Hassell and generalized Beverton–Holt survivorship functions. The proof of this result ‘lifts’
recent results of Kozlovski [23] for one-dimensional dynamics to the dynamics of equation
(1). Despite the fact that ‘most’ parameters in a topological sense have simple ‘observable’
dynamics, maps such as the Ricker map can exhibit more complicated observable dynamics
for parameter values that form a set of positive Lebesgue measure [24]. More specifically, for
these parameters, the Ricker map supports an absolutely continuous measure that provides
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a statistical description of the dynamics for almost every initial condition. It would be inter-
esting to know whether or not this result for one-dimensional dynamics can be ‘lifted’ to the
multidimensional host–parasitoid dynamics.

3.1 Coexistence and collapse

By studying the way parameters affect the equilibrium y∗
2 , one can use Theorem 3.1 to

understand how parameters influence species coexistence and parasitoid-driven extinction.
Here, I consider the effects of the egg limitation and the aggregation of parasitoid attacks on
host–parasitoid dynamics. To keep things focused, I assume throughout this section that the
density-dependent survivorship term is of the Ricker form f (N) = exp(−N) and the host
intrinsic fitness λ is greater than one.

Consider the effect of the aggregation parameter k on the dynamics. To allow for coexistence,
assume that the intrinsic fitness θ/b of the parasitoid exceeds the host’s intrinsic fitness λ. A
straightforward calculation reveals that the equilibrium ratio y∗

2 of parasitoids to hosts increases
without bound as k increases from zero to one. Hence, parasitoids whose attacks are sufficiently
aggregated (i.e. k < k where k < 1 is such that λg(y∗

2 ) =) coexist with the host. Moreover, as
the equilibrium ratio yast

2 of parasitoids to hosts increases with k, the fraction of hosts escaping
parasitism decreases with k. This decrease in the fraction of hosts escaping parasitism tends to
stabilize the host–parasitoid dynamics until the aggregation parameter reaches the threshold
value of k. Beyond this threshold, parasitoid attacks are distributed sufficiently randomly to
drive the host to extinction. The effects of the aggregation parameter on the host–parasitoid
dynamics are illustrated in figure 1.

Next, consider the effect of the egg limitation on the host–parasitoid dynamics. If the para-
sitoid attacks are sufficiently aggregated (i.e. k < 1), then it can be shown that the equilibrium
ratio y∗

2 of parasitoids to hosts decreases with the egg limitation parameter b. Moreover, y∗
2

equals zero whenever egg limitation is sufficiently strong (i.e. b > θ/λ). Consequently, when
parasitoid egg limitation is sufficiently strong, the host persists and the parasitoid is unable
to invade. Alternatively, if the parasitoid egg limitation is too weak (i.e. b < b where b is
such that λg(y∗

2 ) = 1), then the parasitoid drives the host to extinction. Only at intermediate
levels of egg limitation (i.e. λ/θ > b > b) are the host and parasitoid able to coexist. This
phenomena of persistence at intermediate parasitic egg loads is illustrated in figure 2.

4. Including search limitation

A detailed understanding of the host–parasitoid dynamics with search limitation and egg
limitation provides significant mathematical challenges. However, I am able to provide a
criterion for permanence in which the species are able to coexist about a global attractor
bounded away from extinction. Permanence ensures that the species persist following large
yet rate perturbations [25]. To state this criterion, for a sequence xn of positive numbers, define
the geometric mean of xn

〈xn〉G = lim
n→∞

(
n∏

i=1

xn

)1/n

whenever the limit is well-defined.
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Figure 1. Effect of aggregated attacks on host–parasitoid dynamics without search limitation. In both figures, f (N) = exp(−N), λ = 25, a = 0, b = 0.01, and θ = 1.
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Figure 2. Effects of egg limitation on host–parasitoid dynamics without search limitation. In both figures, f (N) = exp(−N), λ = 25, a = 0, k = 0.8 and θ = 1.5.
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THEOREM 4.1 Let a > 0 and λ > 1. If〈
θNn

a + bNn

〉
G

> λ (4)

for any positive solution to the host dynamics N ′ = λNf (N) for which 〈(θNn)/(a + bNn)〉G
is defined, then equation (1) is permanent. Alternatively, if f and g(E) are twice continuously
differentiable and there is a positive solution Nn to N ′ = λNf (N) such that〈

θNn

a + bNn

〉
G

< λ

then (1) is not permanent.

Equation (4) has a simple interpretation. The host encounter rate function E = P/(a + bN)

is based on the type II functional response N/(a + bN) of the parasitoid. Since θ is the num-
ber of parasitoids emerging from a parasitized host, θN/(a + bN) can be interpreted as the
numerical response of the parasitoid. In fact, this interpretation becomes precise when the par-
asitoids are at arbitrarily low densities. Hence, equation (4) states that if the geometric mean of
the parasitoid’s numerical response exceeds the intrinsic fitness of the host, then the host and
parasitoid coexist about a global attractor bounded away from extinction. Conversely, if the
geometric mean of the parasitoid’s numerical response is less than the intrinsic fitness of the
host, then there are positive population trajectories that lead to the extinction of the parasitoid.

If the host exhibits simple dynamics, then it is possible to evaluate equation (4) explicitly.
For instance, if host density-dependence is modeled with the Beverton–Holt function f (N) =
1/(1 + αN), then it suffices to verify equation (4) at the host equilibrium N∗ = λ − 1/α.
In which case, coexistence about a global attractor occurs if θ(λ − 1)/(aα + b(λ − 1)) > λ.
When the host exhibits more complicated dynamics (e.g. periodic orbits of high period or
chaotic orbits), equation (4) is generally difficult to evaluate explicitly. However, if search
limitation is sufficiently weak (as one might expect for a good bio-control agent), then an
explicit criterion can be derived. For λ > 1, it is not hard to prove that

lim
a→0+

〈
θNn

a + bNn

〉
G

= θ/b

for any positive solition Nn to N ′ = λNf (N) for which the geometric means are defined.
Therefore, if the parasitoid’s intrinsic fitness exceeds the host’s intrinsic fitness (i.e. θ/b > λ)
and the parasitoid search limitation is sufficiently weak (i.e. a > 0 is sufficiently small), then
the host and parasitoid coexist about a global attractor. Interestingly, this assertion does not
apply in the complete absence of search limitation. Indeed, Theorem 3.1 implies that when
a = 0, coexistence additionally requires that parasitoid attacks are sufficiently aggregated (i.e.
k < 1) and λg(y∗) > 1 . The mathematical reason for this discrepancy between the absence
of search limitation and weak search limitations lies in the fact that the equations for the
host–parasitoid dynamics are not differentiable at the origin when a = 0. The ecological
interpretation of this discrepancy is simple. When parasitoids are not search-limited, they are
able to track down every last host even when host densities are arbitrarily low. In which case,
the parasitoids drive the hosts and themselves to deterministic extinction. However, when
the parasitoids have the slightest amount of search limitation, the hosts are able to escape
parasitism at low densities and the populations persist.

Comparing figure 1 with figure 3 illustrates how weak search limitation alter the dynamics
of host–parasitoid interactions with egg limitation. In particular, these figures show that for suf-
ficiently randomly distributed attacks of the parasitoid (i.e. k > 0.65), weak search limitation
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Figure 3. Effect of weak search limitation and aggregated attacks on host–parasitoid dynamics. In both figures, f (N) = exp(−N), λ = 25, a = 0.0001, b = 0.01, and θ = 1.
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Figure 4. Effect of search limitation on host–parasitoid dynamics. In all figures, f (N) = exp(−N), λ = 25,
b = 0.01, and θ = 1. In (a) and (b), parasitoid attacks are less aggregated, i.e. k = 1.1. In (c) and (d), parasitoid
attacks are more aggregated, i.e. k = 0.9.

mediates coexistence. The nature of this mediated coexistence depends critically on whether
k < 1 or k > 1. When parasitoid attacks are mildly aggregated (i.e. 0.65 < k < 1), weak
search limitation results in hosts persisting stably at low densities. Alternatively, if parasitoid
attacks are sufficiently random (i.e. k > 1), then weak search limitation mediates coexistence
but the populations exhibit high-amplitude quasi-periodic dynamics. I conjecture that this
difference stems from the fact that for sufficiently aggregated parasitic attacks (i.e. k < 1),
parasitoid-driven extinction with a = 0 supports a stable equilibrium y∗

2 for the dynamics of
the parasitoid to host ratios. In contrast when parasitoid attacks are sufficiently random (i.e.
k > 1), the parasitoid to host ratios diverge in the absence of search limitation.

The effects of increasing search limitation for k > 1 and k < 1 are illustrated in figure 4.
This figure illustrates that increasing search limitation can initially stabilize the host–parasitoid
dynamics. However, when search limitation is too severe, the parasitoids are unable to establish
themselves. Interestingly, at intermediate levels of search limitation the realms of coexistence
and parasitoid failure are intertwined: some initial conditions lead to parasitoid extinction
while other initial conditions permit coexistence.

5. Discussion

There is an emerging consensus that parasitoids are egg-limited as well search-limited [10–12].
Egg limitation places a constraint on the maximal per-capita growth rate of the parasitoid.When
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hosts are not self-regulated (i.e. do not exhibit negative density-dependence), this constraint on
parasitic growth tends to destabilize host–parasitoid interactions [4, 9]. Therefore, successful
suppression of insect pests by parasitoids requires additional stabilizing mechanisms such as
heterogeneity in the distribution of parasitic attacks or host density-dependence [1, 4, 14, 22].
To better understand how host density-dependence, heterogeneity in the distribution of para-
sitic attacks, and egg limitation influence host–parasitoid dynamics. I developed and analyzed
difference equation models that account for all of these factors. Since successful agents of bio-
logical control are likely to be efficient in finding their hosts, the analysis and this discussion
focuses on weakly search-limited parasitoids.

Although all parasitoids are search-limited, the analysis of purely egg-limited parasitoids
provides a conceptual framework for understanding how egg limitation in of itself influences
host–parasitoid dynamics. Based on prior work [20], the analysis reveals that parasitoids can
invade the host system only if the parasitoid intrinsic fitness is greater than the host intrinsic
fitness. Since the parasitoid intrinsic fitness is the expected number of progeny produced by
a parasitoid that successfully lays all of its eggs, successful invasion of a parasitoid species
requires that the ratio of the egg produced by the parasitoid to the eggs produced by the host is
sufficiently large.When parasitoids can invade, the outcome of this invasion depends on the dis-
tribution of parasitoid attacks. In particular, there exists a critical threshold, call it CV ∗, of the
coefficient of variation (CV ) of the number of parasitoid attacks per host. If CV > CV ∗, then
the parasitoid coexists with the host. This coexistence occurs typically (in a topological sense)
about a periodic attractor. However, if CV < CV ∗, then the parasitoid ultimately drives its
host to extinction. The critical threshold CV ∗ is always greater than one. Hence, in a somewhat
mysterious manner, these results connect to prior results about stability of the host–parasitoid
equilibrium in the absence of host self-regulation. For instance, Hassell et at. [22] showed for a
large class of models without egg limitation that CV > 1 is necessary and sufficient for stabil-
ity.Alternatively, Getz and Mills [9] have shown that in the case of egg-limited encounter rates,
CV > 1 is not sufficient for stability. Instead, the required CV for stability increases with the
level of egg limitation. Analogously, it can be shown that the threshold value CV ∗ for the mod-
els considered here increases with the level of egg limitation. Hence, parasitoids with greater
egg limitation require greater variation in the distribution of attacks to coexist with their hosts.

All parasitoids, of course, are search-limited. In the context of classical biological con-
trol, one would expect the most important parasitoids are those species which are weakly
search-limited. The analysis of the weakly search limited model shows that coexistence occurs
whenever the parasitoid intrinsic fitness exceeds the host intrinsic fitness. In particular, even
when their attacks are randomly distributed (i.e. CV is small), the parasitoids are no longer
able to over-exploit their hosts when they reach low densities. However, numerical simula-
tions suggest that for hosts with highly unstable dynamics, there is a fundamental difference
between CV < 1 and CV > 1 for the host–parasitoid dynamics. Parasitoid attacks that are
too evenly distributed (CV < 1) generate high-amplitude oscillations. In contrast, parasitoid
attacks that are sufficiently but not overly aggregated (i.e. CV > 1 but close to 1) promote
stability of host–parasitoid interactions and low host densities.

In conclusion, the analysis presented here suggests that parasitoid species with weak search
limitation, sufficiently high egg loads relative to their hosts, and distributions of attack that are
sufficiently but not overly aggregated are the best candidates for classical biological control.
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Appendix A. Proof of Theorem 3.2

Assume k < 1 and a = 0. Notice that y∗
2 = 0 if θ < λb and y∗

2 > 0 if θ > λb. Define
A1 = {(λ, θ, b) ∈ (0, ∞)3 : θ > λb} and A2 = {(λ, θ, b) ∈ (0, ∞)3 : θ < λb}. By the ana-
lytic implicit function theorem and the definition of y∗

2 = y∗
2 (λ, θ, b), y∗

2 varies analytically
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as a function of (λ, θ, b) on the open sets Ai with i = 1, 2. Consequently,

Hi = {x −→ λx exp(−αx)g(y∗
2 ) : (λ, θ, b) ∈ Ai}

is an analytic family of maps. A straightforward calculation reveals the every h ∈ Hi

has a unique critical point, xc, and negative Schwartzian derivative (i.e. h′′′(x)/(h′(x)) −
3/2((h′′(x))/(h′(x)))2 < 0 for all x 	= xc). Moreover, since Hi contains maps with a globally
attracting equilibrium as well as maps with period two points, there are at least two maps
in Hi that are not combinatorially equivalent. Here, two maps h1 and h2 with critical points
c1 and c2 are called combinatorially equivalent if there exists an order preserving bijection
F : ∪n≥0h

n
1(c1) → ∪n≥0h

n
2(c2) such that F(hn

1(c1)) = hn
2(c2) for all n. Based on these obser-

vations, the following remarkable theorem of Kozlovski [23] applies to Hi . Prior to stating
this theorem, recall that an invariant set A ⊂ R for a C1 map h : R → R is hyperbolic if there
exists C > 0, and λ > 1 such that |f (n)(x)| ≥ Cλn for all x ∈ A and n ≥ 1. A dissipative C1

map h : R → R is Axiom A if h has a finite number of linearly stable periodic points and
if the complement of the basin of attraction for these stable periodic points is hyperbolic.
Dissipativity of h implies that if h is Axiom A, then h has at least one linearly stable periodic
point (possibly of period 1).

THEOREM A1 (Kozlovski 2003 [23]) . Let H be an analytic family of unimodal maps with a
non-degenerate critical point and negative Schwartzian derivative. If there exist two maps in
H that are not combinatorially equivalent, then there exists an open and dense subset O of H
such that every h ∈ O is Axiom A.

Let Bi with i = 1, 2 be the open and dense subset of parameters in Ai for which h(x) =
λx exp(−x)g(y∗

2 ) is Axiom A. Let (λ, θ, b) be in Bi . Since h is unimodal with negative
Schwartzian derivative, Singer’s theorem [26] implies that there exists exactly one linearly
stable periodic orbit. Moreover, the critical point for h lies in the basin of attraction of this
stable periodic point. Now consider the map H : R2+ → R2+ given by H(y) = y ′ where y ′
is given by equation (3). If λg(y∗

2 ) < 1, then Theorem 3.1 implies y = (0, 0) is a periodic
point of period 1 which attracts almost every initial condition. Now suppose that λg(y∗

2 ) > 1.
Theorem 3.1 implies that the line is [0, ∞) × {y∗

2 } is a global attractor. The derivative matrix
DH(y) of H(y) is an upper triangular matrix. Concavity of 1/g with k < 1 implies that
∂H2/∂y2(y1, y

∗
2 ) ∈ (0, 1) for all y1 ≥ 0. It follows for (λ, θ, b) ∈ Bi with λg(y∗

2 ) > 1, the map
H is an Axiom A endomorphism (see [27] for a definition). Let � ⊂ R+ be the complement
of the basin of attraction for the stable periodic orbit of h. Theorem 1 of [27] implies that
the stables set of � × {y∗

2 } for H has Lebesgue measure zero. Consequently, the basin of
attraction of the stable periodic orbit has full Lebesgue measure for H . Taking B1 ∪ B2 gives
the desired open and dense set of parameters.

Appendix B. Proof of Theorem 4.1

Assume a > 0 and λ > 1. To prove this theorem, it suffices to translate some of my arguments
on criteria for robust permanence for differential equations [28] to difference equations. For
an alternative perspective on this approach, see the work of Garay and Hofbauer [29].

Define F(N) = λNf (N) and G(N, P ) = (F (N)g(E), θNf (N)(1 − g(E))) where E =
P/(a + bN). Iterating the maps F(N) and G(N, P ) generate solutions to the host differ-
ence equation N ′ = F(N) and the host–parasitoid difference equation (N ′, P ′) = G(N, P ),
respectively. The first component G1 of G can be expressed as G1(N, P ) = Hh1(N, P )
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where h1(N, P ) = λf (N)g(E). The second component G2 of G can be expressed as
G2(N, P ) = Ph2(N, P ) where

h2(N, P ) =

⎧⎪⎪⎨
⎪⎪⎩

G2(N, P )

P
if P > 0

θN

a + bN
f (N) if P = 0

h2(N, P ) is continuous as G2(N, P ) is continuously differentiable and G2(N, 0) = 0 for all
N ≥ 0. h1 and h2 are the per-capita growth rate (alternatively fitness) functions for the two
species.

The assumptions that limx→∞ f (x) = 0 and f (x) is decreasing imply there are C <

c < 0 such that for all N > 0, c ≤ Fn(N) ≤ C whenever n is sufficiently large. Let � =
∩m≥0∪n≥mFn([0, C]).� is the global attractor forF and has a Morse decomposition consisting
of {0} and

�+ = ∩m≥0∪n≥mFn(0, C]).
Whenever the limit is defined, let

A(N) =
〈

θF n(N)

a + bFn(N)

〉
G

for any N > 0. Let A ⊂ [0, ∞) be the set of points such that A(N) is well-defined. By the
Birkhoff Ergodic Theorem, A forms a set of total probability, i.e. μ(A) = 1 for any F -invariant
Borel probability measure.

Consider and F -invariant Borel probability measure μ. This measure is supported by �.
Associated with the invariant measure are two Lyapunov exponents. The first exponent (in the
host direction) is given by

L1(μ) =
∫

�

ln h1(N, 0)dμ(N)

= ln λ +
∫

�

ln f (N)dμ(N)

where the second line follows from the fact that g(0) = 1. When μ is supported by �+,
L1(μ) = 0 (i.e. the average growth rate is zero) in which case

∫
�

ln f (N)dμ(N) = − ln λ.
When μ is supported by {0} (i.e. μ is a Dirac measure on {0}) L1(μ) = ln λ. The second
Lyapunov exponent (the parasitoid invasion rate) is given by

L2(μ) =
∫

�

ln h2(N, 0)dμ(N)

=
∫

�

ln f (N)dμ(N) +
∫

�

ln
θN

a + bN
dμ(N)

If μ is supported by �+, then

L2(μ) = − ln λ +
∫

μ

ln
θN

a + bN
dμ(N)

Hence, if μ is an ergodic probability measure supported by �+, then the Birkhoff Ergodic
Theorem implies that ln(A(N)/λ) = L2(μ) for μ almost every N .
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Assume A(N) > λ for all N ∈ A ∩ (0, ∞). By the Birkhoff Ergodic Theorem, L2(μ) > 0
for all ergodic probability measures μ supported by �+. On the other hand, since λ > 1,
L1(μ) = 0 for the only probability measure μ supported by {0}. Translating the arguments
found in [28, Theorem 4.3] for differential equations to difference equations implies that
equation (1) is permanent.

Assume A(N) < λ for some N > 0. Then there exists an ergodic probability measure μ

supported by �+ such that the transverse Lyapunov exponent L2(μ) is negative. If G is twice
continuously differentiable, that the Pesin Stable Manifold theorem (see, e.g., [30]) implies
that there exists N > 0, P > 0 such that the second coordinate of Gn(N, P ) converges to zero
as n → ∞. In particular, equation (1) is not permanent.


