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Theoretical and empirical studies have shown that enemy-victim interactions in
spatially homogenous environments can exhibit diverging oscillations which result in
the extinction of one or both species. For enemy-victim models with overlapping
generations, we investigate the dynamical implications of spatial heterogeneity created
by enemy-free sinks or victimless sinks. An enemy-free sink is a behavioral,
physiological or ecological state that reduces or eliminates the victim’s vulnerability
to the enemy but cannot sustain the victim population. For victims that move in an
ideal-free manner, we prove that the inclusion of an enemy-free sink shifts the
population dynamics from diverging oscillations to stable oscillations. During these
stable oscillations, the victim disperses in an oscillatory manner between the enemy-
free sink and the enemy-occupied patch. Enemy-free sinks with lower mortality rates
exhibit oscillations with smaller amplitudes and longer periods. A victimless sink, on
the other hand, is a behavioral, physiological or ecological state in which the enemy has
limited (or no) access to its victims. For enemies that move in an ideal-free manner, we
prove that victimless sinks also stabilize diverging oscillations. Simulations suggest that
suboptimal behavior due to information gathering or learning limitations amplify
oscillations for systems with enemy-free sinks and dampen oscillations for systems with
victimless sinks. These results illustrate that the coupling of a sink created by unstable
enemy-victim interactions and a sink created by unsuitable environmental conditions
can result in population persistence at the landscape level.
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Introduction

Most species live in heterogenous landscapes and are

either victims (e.g. prey, hosts) or enemies (e.g. patho-

gens, predators, parasitoids) of other species. Landscape

heterogeneity often results in spatial variability in

population birth and death rates and can partition the

landscape into a mosaic of source and sink habitats

(Holt 1985, 1997, Pulliam 1988, Dias 1996). In source

habitats, populations persist as birth rates exceed death

rates. In sink habitats, death rates exceed birth rates.

Even though populations constrained to sink habitats

can not persist without immigration of recruits from

sources, the presence or absence of sinks can affect

victim-enemy interactions. Passive dispersal of an enemy

between a source habitat and a sink habitat (e.g. a

habitat without any victims) can stabilize an otherwise

unstable enemy-victim equilibrium and can increase the

equilibrium abundance of the enemy (Holt 1985). At this

equilibrium, the per-capita fitness of the enemy is greater

in the source. Since individuals would increase their

fitness by remaining in the source, this equilibrium is
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evolutionarily unstable. So, why do sink populations

exist?

Holt (1997) proposed two mechanisms resulting in

evolutionarily stable sink populations. First, organisms

may be neither ideal nor free. Constraints on dispersal,

learning, or information gathering may prevent organ-

isms from distributing themselves in an ideal-free

manner (van Baalen and Sabelis 1993, Bernstein et al.

1999, Bolker et al. 2003). Second, non-equilibrium

population dynamics may result in moments when the

fitness in the sink exceeds the fitness in the source. In

these instances, it is advantageous for individuals to

move from the source to the sink. While Holt (1997) only

explored this latter possibility for single species dy-

namics, it is also particularly germane for enemy�/victim

interactions that can generate oscillatory dynamics

(Huffaker 1958, Lukinbill 1973, Hassell 1978). In this

article, we analyze three models of enemy-victim inter-

actions to determine when oscillatory dynamics coupled

with a sink result in evolutionarily stable and ecologi-

cally persistent sink populations. Our study begins with a

well-known model representing enemy-victim interac-

tions in a homogenous environment (Murdoch and

Oaten 1975, Holt 1985). This model is the foundation

upon which the remaining models are built and is proven

to exhibit a dynamic dichotomy; either both populations

grow exponentially or the populations exhibit un-

bounded oscillations. In the former case, the habitat

can be viewed as a source for both populations. In the

latter case, demographic stochasticity will result in the

extinction of one or both species, and the habitat can

be classified as a sink for one or both species.

Our study continues with the inclusion of an enemy-

free sink, which is defined as a behavioral, physiological

or ecological state that reduces or eliminates the victim’s

vulnerability to the enemy (Jeffries and Lawton 1984)

but cannot sustain the victim population. Enemy-free

zones have been observed in many ecosystems. For

example, abalones evade severe sea otter predation by

residing in crevices that allow limited access by predators

(Hines and Pearse 1982). Snails avoid sea star predation

by residence on kelp plants and off the sea bottom where

sea stars forage (Watanabe 1984). In a terrestrial

example, predation by the least weasel can decimate

field vole populations in optimal field and meadow

habitats, but the predator’s hunting efficiency is low on

voles in sub-optimal bog habitats. Surviving voles in the

sub-optimal habitat (i.e. enemy-free sink) can subse-

quently re-colonize field and meadow populations, thus

stabilizing the population (Ylönen et al. 2003). Further-

more, in a meta-analysis, Denno and Peterson (2000)

demonstrate that highly mobile planthopper insects that

can avert predators and move to presumably lower-

quality habitats have more stable populations than other

less-mobile planthopper species. Whether enemy-free

zones are sinks depends on the characteristics of the

habitat. Enemy-free sinks are, however, likely to be

common in ecosystems where anthropogenic stress (e.g.

eutrophication, overfishing, habitat degradation, hy-

poxia) is severe (Jackson et al. 2001). For example,

hypoxic environments are lethal to yellow perch, but not

to their prey, fathead minnows, and, thus, may be

enemy-free sinks (Robb and Abrahams 2002). In our

second model, we analyze enemy-victim dynamics with

victim movement between the enemy-free sink and the

enemy-occupied sink. As such, the victims must move

‘‘between the devil and the deep blue sea’’ (Lawton and

McNeill 1979).

Our third model includes a victimless sink, which is a

behavioral, physiological or ecological state where the

enemy has limited (or no) access to its victims. Victimless

sinks can arise when enemy species go into a dormant

state at low victim densities. For example, when Para-

mecium densities are too low, the protist predator

Didinium encysts by producing a cocoon made of clear

material that hardens into a thick wall. When Para-

mecium densities increase, Didinium excysts and resumes

feeding on Paramecium . Similarly, some species of

copepods cease feeding at low prey densities (Porter

et al. 1983). In a terrestrial example of a victimless sink,

coyotes in low-quality forest habitats in Quebec cease

feeding on small animals in favor of berriesduring the

summer, whereas their counterparts in higher-quality

rural habitats feed on small animals year round. The

coyotes in the sub-optimal summer habitats tend to be

lighter and shorter than the coyotes in optimal habitats

(Tremblay et al. 1998). In our third model, we analyze

the ecological implications of the enemy moving between

the victimless sink and the victim-occupied sink.

Our work is related to previous modeling studies on

enemy�/victim dynamics (Goh 1980, Holt 1984, 1985,

McNair 1986, 1987, Křivan 1997, 1998, van Baalen and

Sabelis 1999, Bernstein et al. 1999, Schreiber et al. 2000).

Goh (1980) studied enemy-victim dynamics in which the

victim moves diffusively between an enemy-free patch

and an enemy-occupied patch. He found that the

inclusion of the enemy-free patch could stabilize the

enemy-victim equilibrium. This stabilizing effect of a

victim refuge, however, may be disrupted if the victim

dynamics in the refuge are unstable (McNair 1987). Holt

(1984, 1985) found that diffusive movement of an enemy

between a victimless sink and a victim-occupied sink can

stabilize the enemy-victim equilibrium. In contrast to

these predictions about diffusive movement, Křivan

(1997, 1998) showed that for Lotka-Volterra enemy-

victim systems with and without victim refuges, ideal-

free movement between patches could stabilize neutrally

stable dynamics. Similarly, van Baalen and Sabelis (1999)

studied Nicholson-Bailey host�/parasitoid models which

have inherently unstable dynamics. The inclusion of

ideal-free movement between (but not within) genera-

tions was shown via simulations to stabilize the dynamics
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about non-equilibrium attractors when there were low

quality (e.g. sinks) patches for the hosts. Finally,

Bernstein et al. (1999) found that for continuous-time

enemy�/victim systems without refuges or sinks, ideal-

free movement of the enemy had no effect on stability of

the equilibrium provided that all species dispersed

quickly. However, at lower migration rates, suboptimal

movement of the enemy could stabilize the enemy-victim

equilibrium.

In contrast to these studies, we consider enemy�/victim

interactions that are inherently unstable, include enemy

or victim refuges, and allow for a continuum of dispersal

strategies from passive dispersal to ideal-free movement.

In particular, we prove that adaptive habitat choice

promotes oscillatory coexistence in the presence of

enemy-free sinks or victimless sinks. Moreover, we

numerically investigate how non-adaptive habitat choice

either due to limited dispersal abilities or limited knowl-

edge about the environment amplify or dampen oscilla-

tions.

The models

Our models revolve around a dynamically unstable

enemy�/victim interaction in a habitat for which the

victim exhibits exponential growth in the absence of

the enemy. Let N and P be the victim and enemy

densities, respectively, r the intrinsic rate of growth of the

victim, Ng(N) the functional response of the enemy, and

h(N) the numerical response of the enemy. These

assumptions lead to the following well-known model

(Murdoch and Oaten 1975, May 1981, Holt 1985)

dN

dt
�r N�P N g(N)

dP

dt
�P h(N) (1)

Since increasing victim densities increases the rate at

which victims are consumed and increases the enemy’s

growth rate, the functional and numerical responses of

the enemy are assumed to increase with N. The function

g(N) is proportional to the fraction of actively searching

predators and is assumed to be a decreasing function of

N (i.e. predators satiate or exhibit handling times).

Finally, as enemies require victims for sustenance, the

per-capita growth rate h(0) of the enemy in the absence

of victims is assumed to be negative.

To account for movement of individuals between two

states (e.g. an enemy-free state and enemy-occupied

state), we assume the per-capita movement rate from

one state, call it state 1; to the other, call it state 2;
depends on the difference between the per-capita growth

rates r1�/r2 in the two states:

d

1 � exp(g(r1 � r2))

where d is the maximum per-capita movement rate and g
determines how quickly individuals respond to differ-

ences in the per-capita growth rates. Roughly, the higher

the value of g, the more ideally individuals respond to

differences in per-capita growth rates. In particular, g�/0

corresponds to passive movement and g�� corresponds

to individuals moving at a maximal rate to the state with

the higher per-capita growth rate. When g�� and d��;
individuals exhibit ideal-free movement, an evolutiona-

rily stable strategy for our models.

To account for an enemy-free sink, we assume the

victim’s per-capita growth rate r2 is negative in this state.

If N1 and N2 denote the densities of the prey outside and

inside the enemy-free sink, respectively, then the enemy-

victim dynamics become

dN1

dt
�rN1�N1Pg(N1)�

dN1

1 � exp(g(r � Pg(N1) � r2))

�
dN2

1 � exp(g(r2 � r � Pg(N1)))

dN2

dt
�r2N2�

dN1

1 � exp(g(r � Pg(N1) � r2))

�
dN2

1 � exp(g(r2 � r � Pg(N1)))

dP

dt
�P h(N1) (2)

An alternative to augmenting a homogenous landscape

with enemy-free sinks is augmenting it with victimless

sinks. Assume the enemy per-capita growth rate r2 in this

victimless sink is negative. If P1 and P2 denote the

densities of the predator outside and inside the victimless

sink, respectively, then the enemy�/victim dynamics

become

dN

dt
�rN�NP1g(N)

dP1

dt
�P1 h(N1)�

dP1

1 � exp(g(h(N1) � r2))

�
dP2

1 � exp(g(r2 � h(N1)))

dP2

dt
�r2P2�

dP1

1 � exp(g(h(N1) � r2))

�
dP2

1 � exp(g(r2 � h(N1)))
(3)

For Eq. 2 and 3, we provide a relatively complete

analysis in the limiting case of ideal-free movement (i.e.

d; g approach �): To understand how non-ideal or

OIKOS 113:1 (2006) 69



non-free movement affects our results, we perform

numerical simulations when the enemy has a Holling

type II functional response. More precisely, N g(N)�
aN

1�aThN
where a and Th are the enemy searching efficiency

and handling time, and h(N)�cN g(N)�m where c and

m are the enemy conversion efficiency and per-capita

mortality rate, respectively.

Results

Enemy�/victim interactions in a homogenous

environment

An important quantity for (1) is the ‘‘intrinsic’’ per-

capita growth rate r of the enemy which corresponds to

the enemy’s per-capita growth rate when victims are

abundant (i.e. r�limN0�h(N)): Throughout this article,

we assume that r is positive else the enemy has no

chance for survival. Under this assumption, this system

has a unique equilibrium

N��h�1(0) P+�
r

g(N+)

at which both populations coexist. This equilibrium is

known to be unstable. In Appendix A, we prove that

dynamics of (1) come in two flavors:

Enemy�/victim sink . The enemy and victim exhibit

more and more severe oscillations that result in

arbitrarily low and high victim and enemy densities

(Fig. 1a, 1b). In the presence of demographic

stochasticity, these undamped oscillations inevitably

result in the extinction of the enemy or both species.

Thus, the presence of the enemy transforms a source

habitat for the victim to a sink habitat for at least one

of the species.

Enemy�/victim source. After some initial oscillations,

the enemy and victim numbers grow at an exponen-

tial rate (Fig. 1c, 1d).

In the next three sections, we focus on how the addition

of enemy-free sinks or victimless sinks affects the

dynamics of enemy�/victim sinks.

Inclusion of enemy�/free sinks

If the victims have ideal-free access to the enemy-free

sink (i.e. g; d approach � in (2)), then the enemy�/victim

dynamics simplify to

dN

dt
�

r2 N if r2�r�P g(N)
r N�P N g(N) if r2Br�P g(N)

�

dP

dt
�

P h(0) if r2�r�P g(N)
P h(N) if r2Br�P g(N)

�
(4)

Even though these equations are only defined when r2"

r�P g(N); the population trajectories of (4) extend

naturally to the ‘‘switching curve’’ P�r�r2

g(N)
i.e. the set

of enemy�/victim densities at which the per-capita

growth rate of the victim in both states is negative and

equal to r2: Population trajectories hitting this curve can

do one of two things. At points on the switching curve

where growth rate vectors (dN
dt
; dP

dt
) on either side point

toward the switching curve, population trajectories slide

along the switching curve in a uniquely specified way

described in Appendix B (Fig. 2a). Alternatively, at

points where all growth rate vectors near the switching

curve point downward, population trajectories pass

through the switching curve (Fig. 2b). When a popula-

tion trajectory slides down the switching curve (Fig. 2a),

the victim spends a fraction a of its time with enemies.

In Appendix B, we prove three results about an

enemy-free sink augmenting an enemy�/victim sink.

First, all non-equilibrium population trajectories of (4)

eventually hit the switching curve and converge to a

globally attracting periodic population trajectory.

Hence, the inclusion of an enemy-free sink strongly

dampens and stabilizes the enemy�/victim oscillations,

ensuring the long-term persistence of both populations

(Fig. 3a�/b). Second, this periodic population trajectory

has one segment along the switching curve during which

the victim enters the enemy-free sink (Fig. 3c). Hence,

the victims move periodically between the enemies and

the enemy-free sink, entering the enemy-free sink when

enemy population densities are high and leaving the

enemy-free sink when enemy population densities are

low. Third, increasing the per-capita growth rate r2 of

the victim in the enemy-free sink brings the switching

curve closer to the victim nullcline and thereby decreases

the amplitude of the enemy�/victim oscillations. In fact,

in the extreme case when the enemy-free sink is of

marginal quality for the victim (i.e. r2�0); the enemy�/

victim equilibrium becomes globally stable.

When the victims do not exhibit ideal-free movement,

the inclusion of an enemy-free sink may no longer

stabilize the enemy�/victim interaction. Freely moving

victims that respond slowly to differences in per-capita

growth rates (i.e. g small and d large) generate extreme

oscillations that in a more realistic model accounting for

demographic stochasticity would lead to rapid extinction

of one or both species (Fig. 4a). In contrast, victims that

respond more ideally to differences in per-capita growth

rates dampen the oscillations (Fig. 4b, 4c). Similarly,

higher dispersal rates result in higher minimum popula-

tion densities and, consequently, a lower risk of extinc-

tion (Fig. 4d). An interesting exception to this trend is

victims that effectively disperse passively (i.e. g small), in
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Fig. 1. Two types of dynamics for homogenous enemy-victim interactions as modelled by (1). In (a) and (b), the enemy over-exploits
the victim. In (c) and (d), both populations exhibit exponential growth. (a) and (c) are phase portraits with arrows representing
growth vectors (dN

dt
; dP

dt
); grey lines representing nullclines, and the solid curve a typical population trajectory. In (b), enemy and victim

densities of the population trajectory in (a) are plotted against time. In (d), the logarithm of enemy and victim densities of
population trajectory in (c) are plotted against time
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Fig. 2. Two dynamics on the switching curve of (4) with Ng(N)� a N
1�Tha N

and h(N)�u N g(N)�m: The arrows represent growth
vectors (dN

dt
; dP

dt
); the solid grey curve represents the switching curve, and the solid black curve represents a population trajectory. In

(a), a population trajectory hits and follows the switching curve. In (b), a population trajectory passes through the switching curve.
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which case the minimum prey density is maximized at

intermediate dispersal rates.

Inclusion of victimless sinks

If the enemy has access to victimless sinks and is ideal

and free (i.e. g,d approach � in (3)), then the enemy-

victim dynamics simplify to

dN

dt
�

r N if r2�h(N)
r N�P N g(N) if r2Bh(N)

�

dP

dt
�

r2 P if r2�h(N)
P h(N) if r2Bh(N)

�
(5)

Even though these equations are only defined when r2"

h(N); the population trajectories of (5) naturally extend

in a unique way to the victim ‘‘switching line’’ N�
h�1(r2): Population trajectories (N(t);P(t)) hitting this

switching line can do one of two things depending on

whether they hit the switching line above or below the

point (Ñ; P̃)�(h�1(r2);
r

g(h�1(r2))
) where the switching line

intersects the victim nullcline. If a population trajectory

hits the switching line above this point, then the

trajectory slides down the switching line to the point

(Ñ; P̃) (Fig. 5a). When this occurs, the enemies spend a

fraction a of time with the victims (Appendix C). If a

population trajectory hits the switching line below

(Ñ; P̃); then the trajectory passes through the switching

line (Fig. 5b).

Using arguments similar to those found in Appendix

B, we can draw three conclusions. First, whenever a

population trajectory (N(t); P(t)) initiated at (Ñ; P̃)
eventually exhibits a decline in victim numbers, then

this solution forms a stable periodic trajectory to (5). In

particular, when the populations exhibit unbounded

oscillations in the absence of the victimless sink, the

inclusion of the victimless sink produces a globally

stable periodic motion (Fig. 6a�/b). Second, along

this periodic motion, the minimum victim density is

given by N�h�1(r2): Consequently, the higher the per-

capita growth rate r2 of the enemy in the victimless

sink, the higher the minimum victim density. Third,

along this periodic motion, the enemy dances between
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Fig. 3. The dynamics of (4) when Ng(N)� a N
1�Tha N

and h(N)�u N g(N)�m: In (a) all populations in the victim�/enemy phase

space approach a unique periodic trajectory. The enemy and total victim densities of this periodic trajectory are plotted against time
in (b). In (c), the fraction 1�a(t) of time that the victims spend in the enemy-free sink is plotted against time.
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the victims and the victimless sink, entering the

victimless sink when the victim density is Ñ and exiting

the victimless sink when victim density increases again

(Fig. 6c).

In contrast to enemy-free sinks, ideal-free movement

of the enemies into victimless sinks can generate oscilla-

tions with larger amplitudes than more diffusive move-

ment of enemies (Fig. 7). However, these larger
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periodic solution are plotted against time in (b). In (c), the fraction of time spent by the enemy (equivalently, the fraction of enemies)
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oscillations, as we have shown analytically, need not

result in a significantly higher risk of extinction (i.e. the

minimum population densities are significantly higher

than Ñ): Moreover, more freely moving enemies appear

to always increase the minimum population densities

and decrease the amplitudes of the population oscilla-

tions.

Adding victim density-dependence

Thus far density dependence has only manifested itself in

these models via the enemy’s functional and numerical

response. The inclusion of victim density dependence

tends to have a stabilizing effect on thesource dynamics.

To illustrate how victim density�/dependence influences

our earlier results, we include it in the victimless sink

model with ideal-free movement:

dN

dt
�

r N(1�N=K) if r2�h(N)
r N(1�N=K)�P N g(N) if r2Bh(N)

�

dP

dt
�

�r2 P if r2�h(N)
P h(N) if r2Bh(N)

�
(6)

where K is the carrying capacity of the victim. Since the

victim numerical response was not changed, the switch-

ing line is still given by N�h�1(r2): The behaviors of

population trajectories hitting the switching line are

similar to the solutions for (5) (Fig. 4). The inclusion of

this victimless sink has a long-term effect only if there is

a periodic trajectory for (6) whose minimum victim

density is less than h�1(r2) (Fig. 8a). This occurs, for

instance, if the system is sufficiently enriched (i.e. K is

sufficiently large), or the enemy nullcline N�h�1(0) is

sufficiently close to the enemy axis. In these cases, the

inclusion of the victimless sink strongly dampens the

amplitude of the enemy�/victim oscillations (Fig. 8b).

Discussion

Models, experiments, and field studies have shown that

enemy-victim interactions in homogenous environments

can exhibit boom and bust cycles that result in the

extinction of one or both species (Utida 1957, Huffaker

1958, Luckinbill 1973, Murdoch and Oaten 1975,

Hassell 1978). We prove that this can occur for victim-

enemy models with a saturating enemy functional

response and density-independent victim dynamics.

Spatial or population heterogeneity can stabilize these

unbounded oscillations (Hassell 1978, Sabelis et al. 1991,

van Baalen and Sabelis 1993, Schreiber et al. 2000) even

when the heterogeneity is generated by sink habitats;

habitats in which a species’ death rate exceeds its birth

rate. For example, Holt (1985) showed that passive

dispersal of the enemy into a victimless habitat or state

(a sink for the enemy) can stabilize the enemy-victim

equilibrium. This equilibrium, however, is not evolutio-

narily stable as individuals avoiding the victimless sink

maintain a higher per-capita growth rate. To understand

how evolutionarily stable sink populations arise, we

analyzed enemy-victim dynamics in which one species

moves in an ideal�/free manner in and out of a sink (see

Cressman et al. 2004 for a discussion about the relation-

ship between ideal�/free distributions and evolutionarily

stable strategies). According to Holt (1985, p. 196) ‘‘the

ultimate effect of this on population size and stability is

not at all obvious.’’ Our analysis proves that the ideal-

free movement into a sink promotes persistence by

shifting the dynamics from undamped oscillations to a

globally stable periodic motion. Along this periodic

motion, the ideal-free species moves in and out of the

sink, thereby maintaining an ecologically persistent and

evolutionarily stable sink population. Moreover, we

prove that the longer the sink can sustain a population,

the smaller the amplitude of the enemy-victim oscilla-

tions and the higher the minimum victim density. These

results apply both to enemy-free sinks and victimless

sinks.
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Fig. 8. In (a), a phase portrait of (6) with victim and enemy densities on the horizontal and vertical axes, respectively. In (b), the
effect of including a victimless sink.

OIKOS 113:1 (2006) 75



Our results for ideal-free movement are related to four

earlier studies (Křivan 1997, 1998, van Baalen and

Sabelis 1999, Bernstein et al. 1999). Křivan (1997)

considered a two-patch model in which each patch had

a classical Lotka-Volterra enemy�/victim interaction

with a neutrally stable equilibrium. This classical inter-

action does not permit persistence as arbitrarily low

levels of demographic or environmental stochasticity

result in irregular undamped oscillations resulting in the

extinction of one or both species. Křivan proved that

ideal-free movement between the patches results in a

global attractor consisting of a neutrally stable equili-

brium surrounded by periodic motions. Křivan found

similar results for a two patch model where one of the

patches acted as a refuge for the prey. While ideal-free

movement promotes persistence in both of these models,

the inclusion of arbitrarily low levels of noise into these

models will result in bounded irregular oscillations with

no well-defined amplitude or period. Our analysis high-

lights this structural instability. We prove that predator

satiation (no matter how slight) in conjunction with

ideal-free movement results in a globally stable periodic-

motion which is structurally stable (Broucke et al. 2001).

In particular, these oscillations have well-defined ampli-

tudes and periods even in the presence of small random

perturbations. Bernstein et al. (1999) analyzed a con-

tinuous-time enemy-victim interaction with three source

patches frequented by all species and with a type II

functional response accounting for interference. When

both species disperse rapidly and the victim disperses

passively, Bernstein et al. proved that optimal foraging of

the enemy has no effect on the stability as the patches

effectively merge into one patch. van Baalen and Sabelis

(1999) considered multi-patch enemy-victim interactions

in which each patch exhibited Nicholson-Bailey dy-

namics. These models assume the species have synchro-

nized generations and within a patch generate undamped

oscillations. When both species exhibit ideal-free move-

ment, simulations of the interactions yield either extinc-

tion or coexistence via chaotic fluctuations. Unlike our

results, periodic or equilibrium coexistence was not

observed. The inclusion of sink patches resulted in less

extreme albeit chaotic fluctuations and promoted persis-

tence. As proposed by Holt (1997), these fluctuations in

population densities, whether periodic or aperiodic,

generate moments in time where fitness in the sinks

exceeds fitness in the sources. During these moments,

ideal-free populations move into the sinks and create

evolutionarily stable and ecologically persistent sink

populations.

Due to constraints on dispersal, information gather-

ing, or learning, individuals may make sub-optimal

decisions about patch selection (Holt 1997, van Baalen

and Sabelis 1993, Bernstein et al. 1999, Bolker et al.

2003). Our simulations illustrate that these constraints

have significant effects on the stability and persistence of

enemy-victim interactions. Moreover, these effects de-

pend critically on which species disperses. When disper-

sing in and out of enemy-free sinks, victims that respond

more ideally to the spatial variation in fitness tend to

dampen population oscillations without having a sub-

stantial impact on the mean population abundance. In

contrast, when dispersing in and out of victimless sinks,

enemies that respond more ideally to the spatial varia-

tion in fitness can lower mean population abundance

and amplify population oscillations. Using their three

patch model, Bernstein et al. (1999) also considered

the effect of sub-optimal behavior of the enemy on

stability. They assumed that enemies, for a fraction e of

time, make optimal decisions and disperse randomly

otherwise. They found that the amount of predator

interference required for stability was minimized at

intermediate values of e. Hence, depending on the nature

of the ecological and environmental details, suboptimal

behavior can stabilize or destabilize species interactions.

Empirical evidence

An enemy-free sink is a state in which the victims have

little or no chance of encountering natural enemies and

in which the victims per-capita growth rate is negative.

Spatial refugia for victims can form enemy-free sinks.

For example, rock crevices may provide limited access to

sea otters foraging on abalones in central California

(Hines and Pearse 1982). Some abalones (including

Haliotis kamtschatkana ) feed primarily on diatoms and

small algae (Paul et al. 1977) that cannot grow well in

shaded crevices. Though crevice populations have re-

mained stable at 1.8 abalones 10 m�2 over the time

period of intense sea otter predation 1972�/1981 (in-

dicating constant survivorship and recruitment rates;

Hines and Pearse 1982), transport via the California

Current may have provided recruitment to crevice

populations from abalone populations further north,

outside of the range of sea otters. Thus, we postulate that

these crevice populations represent enemy-free sinks that

require larvae from outside (i.e. source) populations to

persist. Alternatively, Tegula snails have a spatial refuge

from sea star predation in kelp plants and off the bottom

where sea stars forage (Watanabe 1984). These habitats

may be sub-optimal and form enemy-free sinks, as snails

prefer residence on the kelp forest floor in shallower

depths where predators are absent. Enemy-free sinks are

likely to be common in ecosystems degraded by anthro-

pogenic stress (Jackson et al. 2001). For instance,

eutrophication has caused many freshwater and marine

habitats to have greatly reduced levels of dissolved

oxygen (i.e. hypoxia) (Diaz and Rosenberg 1995, Raba-

lais and Turner 2001). In freshwater systems, yellow

perch (Perca flavescens ) has a lower tolerance for

hypoxic habitats than one of its prey species, fathead
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minnow (Pimephales promelas ). Hypoxic environments

that are lethal to perch, but not to fathead minnows,

could provide enemy-free refuges (Robb and Abrahams

2002). In estuarine and marine habitats that experience

periodic hypoxia, the Baltic clam (Macoma balthica ) is

able to persist, but a major predator of Baltic clams, the

blue crab, Callinectes sapidus, is unable to forage

effectively (Seitz et al. 2003) and typically emigrates

from these habitats (Pihl et al. 1991, 1992). Since the

victim species persists in hypoxic habitats under physio-

logically stressful conditions where growth and repro-

duction are impaired (Seitz et al. 2003), these examples

may be enemy-free sinks. Terrestrial systems have similar

examples of enemy-free or victimless sinks. For instance,

voles migrate from meadows or fields (which are optimal

habitats) to bogs (which are ‘sub-optimal’ habitats)

during periods of high vole abundance, and predator

foraging efficiency is decreased in those bog habitats (i.e.

enemy-free sinks). Surviving vole sub-populations in the

bogs can re-colonize field habitats after predation has

reduced the vole populations there. This movement

between sources and sinks by the prey leads to popula-

tion stabilization. Planthoppers (Hemiptera: Delphaci-

dae) and their suite of predators and parasitoids show a

similar trend. A meta-analysis by Denno and Peterson

(2000) indicates that highly mobile species of planthop-

pers that can move from one patch of habitat to another

in response to high predator pressure tend to have stable

populations, whereas those that are less mobile tend to

exhibit frequent population outbreaks followed by

crashes. Thus, the movement between habitats that

vary in quality and predation pressure leads to stability

in the system.

Our analysis proves that ideal-free movement by the

victim into the enemy-free sink can result in a globally

stable periodic motion. Along this periodic motion,

victims enter the sink when enemy densities are high

and leave the sink when enemy densities are low. This

type of victim movement has been observed in natural

populations although the victim response to enemy

density is confounded with seasonal and daily fluctua-

tions of environmental cues. For instance, a study on

caribou populations (Bergerud 1988) showed that car-

ibou herds that moved out of comparatively rich forested

lands to sparsely vegetated tundra during times of

increased predation risk from wolves exhibited higher

levels of population growth than did herds that stayed in

the forest. Although the herds did not appear to live

permanently in the tundra habitat because of food

limitation, this habitat seemed to be necessary for a

herd to thrive. Indeed, many of the herds that did not

migrate declined because of the wolf predation, thus

showing the potential importance of sink habitats as a

temporary refuge. Another natural situation involves

diel vertical migration of zooplankton in lakes and

marine ecosystems (Neill 1990, Bollens and Frost

1991). At night, predatory zooplankton migrate up in

the water column where they can feed on phytoplankton

and small zooplankton, but where their visually-hunting

predators (e.g. fish, diving birds) are unable to forage

successfully. During daytime, the predatory zooplankton

migrate deep out of the photic zone where they can avoid

visually hunting predators, but where there is low food

availability, thereby creating a temporal enemy-free sink

for the predatory zooplankton.

A victimless sink (or victimless space) is a state in

which the enemy has limited or no access to victims. One

instance of victimless sinks involves changes in the

functional response of predators due to changes in

prey density. Planktonic filter-feeding invertebrates,

such as copepod crustaceans, increase the proportion

consumed of available prey as prey density declines.

However, at a threshold of low prey density, feeding

ceases in some species of copepods (Porter et al. 1984),

thus creating a behavioral victimless sink. Another

instance of victimless sinks arises due to movement of

the enemy through spatially heterogenous landscapes.

For example, the prey landscape for the blue crab is

composed of prey patches (e.g. Baltic clam) on the order

of 10�/100 m (Hines et al. 1995, Seitz and Lipcius 2001).

The surrounding matrix is free of suitable prey, but must

be traversed by foraging crabs moving between prey

patches (Hines et al. 1995). Moreover, within any

particular prey patch, crabs are antagonistic such that

mutual interference reduces crab foraging efficiency

(Mansour and Lipcius 1991, Clark et al. 1999a, 1999b),

leading some crabs to emigrate to different prey patches.

Hence, the prey landscape for the blue crab comprises (1)

source habitats where prey are available but where

aggressive interactions can become so intense as to cause

some crabs to depart, and (2) victimless sinks where prey

are lacking but which must be negotiated to reach

alternative prey patches. In a terrestrial example of a

victimless sink, eastern coyotes (Canis latrans ) in Cana-

dian forest systems switch from feeding primarily on

small animals to feeding on berries during the summer

(Tremblay et al. 1998). This switch in feeding behavior

was correlated with lower body size and lower pup

survival as compared to populations where consumption

of animal flesh was the primary source of food year

round. This is an example of a behavior-mediated

victimless sink, as the coyotes do not leave the forest

habitats but rather stop hunting their preferred prey.

Implications for conservation and management

In applied population ecology these results are relevant

in at least three areas �/ fisheries ecology and manage-

ment (Quinn and Deriso 1999), pest control (Berryman

1999), and conservation and restoration biology (Burg-

man et al. 1993). For instance, in fisheries management
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and marine biodiversity conservation, there is a world-

wide focus on the implementation of marine reserve

networks, with emphasis on the protection of source

habitats (Crowder et al. 2000, Lipcius et al. 2001),

while sink habitats are deemed too poor to be worth

protecting. Moreover, there is a general opposition to the

protection of sink habitats, reasoning that protection of

sinks takes away from the metapopulation by redirection

of conservation activities away from source habitats.

Similarly, in pest control, one logical strategy is to

eradicate or reduce pests in source habitats, reasoning

that elimination of source populations will lead to the

demise of the metapopulation (Berryman 1999). This

study demonstrates that sink habitats warrant serious

consideration in conservation and management. Since a

sink habitat may stabilize enemy�/victim interactions, the

destruction of ‘poor quality’ habitats could result in the

crash of the population, whether for good in the case of

pests, or for bad in the case of populations needing

restoration or conservation. Similarly, Jonzen et al.

(2005) demonstrate that trend detection in metapopula-

tions may be more effectively achieved by monitoring

populations in sink rather than source habitats, under a

diverse set of environmental and demographic condi-

tions. It is becoming clear that a sound understanding of

source�/sink dynamics, especially for multi-species inter-

actions, is critical in making correct conservation and

management decisions.
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Appendix A. The unbounded dynamics of (1)

Consider the following model where N is the victim

density, P the enemy density, r is the intrinsic rate of

growth of the victim, Ng(N) is the enemy functional

response, and h(N) is the numerical response of the

enemies

dN

dt
�r N�N P g(N) (7)

dP

dt
�P h(N)

As stated earlier, we assume that Ng(N) is increasing,

g(N) is decreasing, and h(N) is increasing and saturat-

ing. Provided that r� limN0�h(N)�0; this system has

a unique positive equilibrium, (N+;P+)�(h�1(0); r
g(N�)

):

Linearization about the positive equilibrium (N�;P�)
gives

�N+ P+g?(N+) �N+ g(N+)
P+h?(N+) 0

� �

Since g?(N+)B0; the trace and determinant of this

matrix is positive and (N�;P�) is unstable. Consider the

change of variables u�ln(N) and v� ln(P) on the

positive quadrant. With respect to this change of

coordinates, (7) becomes

du

dt
�r�ev g(eu) (8)

dv

dt
�h(eu)

The divergence of (8) is given by �evg?(eu)eu: As g is a

decreasing function, the divergence is always positive.

Hence, by the Bendixson criterion, there are no periodic

orbits in the positive quadrant. Poincaré-Bendixson

theory implies that any bounded solution must contain

equilibria in its v-limit set. As the two equilibria in the
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non-negative quadrant are unstable, the only bounded

solutions in the non-negative quadrant are the equili-

bria.

Now suppose that r�r: We will show that the

solutions exhibit unbounded oscillations. The non-

trivial N and P nullclines divide the positive quadrant

into four distinct regions: I where dN
dt
�0 and dP

dt
�0; II

where dN
dt
B0 and dP

dt
�0; III where dN

dt
B0 and dP

dt
B0; and

IV where dN
dt
�0 and dP

dt
B0: We begin by showing a non-

equilibrium solution (N(t);P(t)) with N(0)�0 and

P(0)�0 can not remain in region I for all t]0: Suppose

to the contrary the solution remains in region I for all

t]0: Let e�r�r
2
: As dN

dt
�0 and dP

dt
�0 in region I, N(t)

and P(t) are increasing without bound. Hence, there

exists T�0 such that h(N(t))]r�o for t]T: It follows

that

P?(t)](r�e)P(t)

for t]T: Therefore, P(t)]P(T)e(r�e)(t�T) for t]T:
Setting s�N(T)g(N(T))�0; we get that

N?(t)5r N(t)�s P(T)e(r�e)(t�T)

for t]T: This differential inequality implies

N(t)5

�
N(T)�

s P(T)

r� r � e

�
er(t�T)

�
s P(T)

r� r � e
e(r�e)(t�T)

for t]T: However as r�e�r; we get that N(t)B0 for t

sufficiently large which is absurd! Hence, any solution

entering region I must eventually leave region I. As N(t)
and P(t) are increasing in region I, a solution leaving

region I must enter region II. The definitions of the

regions, the fact that the non-zero N nullcline (i.e. P�
r

g(N)) is an increasing function of N, and the non-zero P

nullcline is a vertical line imply any solution entering

region II must leave region II and enter region III, any

solution entering region III must leave region III and

enter region IV, and any solution entering region IV

must leave region IV and enter region I. Combining

these results imply that any non-equilibrium solution

cycles indefinitely in forward time through regions I, II,

III, and IV. Let G1�f(h�1(0);P):05P5P+g i.e. the

lower half of the vertical P nullcline. By Poincaré-

Bendixson theory, the instability of the positive

equilibrium and the lack of periodic solutions, any

non-equilibrium solution in forward time intersects G1

in a decreasing sequence of points that converges to

(h�1(0); 0): Let G2�f(h�1(0);P):P+5Pg i.e. the upper

half of the vertical P nullcline. By Poincaré-Bendixson

theory and instability of the positive equilibrium, any

non-equilibrium solution in forward time intersects G2

in an increasing sequence of points that converges to

(h�1(0);�): Hence, any non-equilibrium solution in

forward time comes arbitrarily close to the N and P axes.

The previous arguments imply (in general) any

positive non-equilibrium solution (N(t);P(t)) either

oscillates between regions I, II, III, and IV, or there is

a T�0 such that (N(t);P(t)) lies in region I for t]T: In

the first case, the limit set of (N(t);P(t)) is the N and P

axes. In the later case limt0�N(t)�limt0�P(t)���:
Suppose that r�r: We will show that every positive

non-equilibirium solution (N(t);P(t)) satisfies

limt0�N(t)�limt0�P(t)��� by contradiction. Define

s�limN0�N g(N): Assume to the contrary that the

solution oscillates between regions I, II, III, and IV. It

follows that limit set of (N(t);P(t)) contains the N-axis.

Hence, there exists T]0 such that N(T)�2 sP(T)
r�r : Since

h(N)5r for all N�0; rP(t)]h(N(t)) P(t)�P?(t) for

t]0: Thus, P(T)er(t�T)]P(t) for all t]T: On the other

hand, N?(t)]r N(t)�sP(T)er(t-T) for all t]T: This

differential inequality and our choice of T imply

N(t)]

�
N(T)�

s P(T)

r � r

�
er(t�T)�

s P(T)

r � r
er(t�T)

]
s P(T)

r�r er(t�T)�s P(T)

r�r er(t�T)

for all t]T: Since r�r; limt0�N(t)��: Since r�
limN0�h(N)�0; there exists t�0 such that h(N(t))�

r=2 for all t]t: Since P?(t)]P(t)r=2 for t]t; P(t)]

P(t)er(t�t)=2 for all t]t and limt0�P(t)��:

Appendix B. The dynamics of (4)

When a population trajectory slides along the switch-

ing curve, there is an unique a that determines the

convex combination of the growth rate vectors lying

immediately above and below the switching curve that

yields a vector tangent to the switching curve. More

precisely, a satisfies

�
r � r2

g(N)2 g?(N)�
P a h(N) � P (1 � a) h(0)

raN � aNPg(N) � r2(1 � a)N

(9)

where the left hand side is the slope of the switching

curve and the right hand side is the slope of the growth

rate vector along the switching curve.

To understand the global dynamics of (4), we make

three observations about population trajectories near

the switching curve. First, the switching curve P� r�r2

g(N)
is

an increasing function of N. Second, to the right of the

enemy-nullcline, the enemy growth rate is positive below

the switching curve and negative above the switching

curve. Consequently, population trajectories that hit the

switching curve to the right of the enemy nullcline slide

down the switching curve to the left of the enemy

nullcline. Third, at N�/0 the enemy growth rate is
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negative above and below the switching curve. Conse-

quently, population trajectories hitting the switching

curve near N�/0 pass through the switching curve.

These three observations imply there is a positive victim

density N̂BN� such that population trajectories hitting

the switching curve to the right of N̂ slide down the

switching curve until reaching N̂: After reaching N̂; the

population trajectory enters the region below the switch-

ing curve. For example, consider a type II functional

response Ng(N)� a N
1�Tha N

and the associated numerical

response h(N)�u N g(N)�m where a, Th, u, and m are

the enemy’s searching efficiency, handling time, conver-

sion efficiency, and per-capita mortality rate. For these

equations the switching curve is the line P�
(r�r2)(1=a�ThN) and the critical victim density is

N̂� m
Th a(r�r2):

These previous observations show how a population

trajectory moving along the switching curve generates a

periodic trajectory. Consider a solution (N(t);P(t)) of (4)

initiated at (N̂; (r�r2)=g(N̂)): This solution will initially

move below the switching curve and move to the right of

the enemy nullcline. If this trajectory hits the switching

curve to the right of the enemy nullcline, then the

population trajectory slides down the switching curve

until (N̂; (r�r2)=g(N̂)) thereby creating a periodic

trajectory. When such a periodic trajectory exists, all

solutions that hit the sliding curve to the right of the

enemy nullcline eventually follow this periodic trajec-

tory. To see when this periodic trajectory exists. Notice

that below the switching curve, (1) and (5) are equiva-

lent. Since (1) exhibits unbounded oscillations when

r�r (i.e. (1) is an enemy-victim sink), all positive

trajectories of (5) eventually hit the switching curve.

Hence, when r�r; there is a unique periodic trajectory

that attracts all positive non-equilibrium trajectories.

The value of a along the periodic orbit is 1 off of the

switching curve and given by (9) on the switching curve.

Appendix C. The dynamics of (6)

In this Appendix, we determine an explicit expression

for a along the switching line. This a determines the

unique convex combination of the growth rate vectors

on either side of the switching line that is tangent to the

switching line. More precisely, since the switching line is

vertical, a must satisfy

0�a(r N�N P g(N))�(1�a)r N

Since N�h�1(r2) on the switching line, a is given by

a�
r

Pg(h�1(r2))

whenever P� r
g(h�1(r2))

:
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