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Abstract. Let f : M → M be a continuous map of a locally compact metric
space. Models of interacting populations often have a closed invariant set
∂M that corresponds to the loss or extinction of one or more populations.
The dynamics of f subject to bounded random perturbations for which ∂M is
absorbing are studied. When these random perturbations are sufficiently small,
almost sure absorbtion (i.e. extinction) for all initial conditions is shown to
occur if and only if M \ ∂M contains no attractors for f . Applications to
evolutionary bimatrix games and uniform persistence are given. In particular,
it shown that random perturbations of evolutionary bimatrix game dynamics
result in almost sure extinction of one or more strategies.

1. Introduction. Often the dynamics of interacting populations in ecological, evo-
lutionary, epidemiological, etc. systems are modeled by iterating a continuous map
with an invariant set that corresponds to the extinction or loss of one or more
species, genotypes, pathogens, etc. Understanding the conditions under which ex-
tinction is or is not inevitable has been the focus of much research. On one hand,
coexistence in these models has been equated with a range of mathematical def-
initions including existence of attractors disjoint from the extinction set, uniform
persistence or permanence, and robust permanence [1, 2, 10, 11, 12, 16, 17]. On the
other hand, extinction has been typically equated with all initial conditions result-
ing in the demise of one or more of the interacting populations [6, 9, 15, 18]. Since
interacting populations are always subject to random perturbations (e.g. demo-
graphic or environmental stochasticity) and numerical simulations of iterated maps
are subject to computer roundoff errors, the purpose of this paper is to take into
account these small perturbations when defining coexistence and extinction. In the
remainder of this section, the main result of this paper is introduced. Section 2
provides a proof of the main result. Section 3 gives applications to evolutionary
bimatrix games and uniform persistence.

Let f : M → M be a continuous map of a locally compact metric space M
with metric d. Let ∂M be a closed invariant set, i.e. f(∂M) = ∂M , and define
M◦ = M \ ∂M . For models of interacting populations, ∂M corresponds to the
absence or extinction of one or more populations. Given A,B ⊂ M , let dist(A,B) =
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inf{d(x, y) : x ∈ A, y ∈ B}, and for δ ≥ 0, let N(A, δ) = {y ∈ M : dist(y,A) ≤
δ}. For notational convenience, when A = {x}, we write N(x, δ) and dist(x,B)
instead of N({x}, δ) and dist({x}, B), respectively. For a set A ⊂ M , let ω(A) =
∩n≥1∪m≥nfm(A) denote the ω-limit set of A. A compact set A ⊂ M is an attractor
if there exists an open neighborhood U of A such that ω(U) = A. The basin of
attraction of an attractor A is given by B(A) = {x ∈ M : ω(x) ⊂ A}.

To account for small random perturbations of f , for every ε > 0, let {Xε
n}n≥0

be a Markov chain with transition kernel P ε
x(U) = P (Xε

1 ∈ U |Xε
0 = x) for x ∈ M

and Borel sets U ⊂ M . Let suppP ε
x denote the support of the transition kernel.

Throughout this article, we assume that the transition kernel satisfies the following
hypotheses.

H1: P ε
x(N(f(x), ε)) = 1 for all x ∈ M .

H2: P ε
x(∂M) = 1 for all x ∈ ∂M .

H3: There exists δ = δ(ε) ∈ (0, ε) such that N(f(x), δ) ⊂ suppP ε
x for any

x ∈ M◦ and P ε
x(∂M) > 0 whenever f(x) ∈ N(∂M, δ).

H4: If P ε
x(K) > 0 for a closed set K ⊂ M , then there exists a neighborhood U

(depending on x and ε) of x such that infy∈U P ε
y(K) > 0.

H1 corresponds to assuming that the random perturbations of f are small with
probability one. H2 ensures that ∂M is absorbing for the Markov chain. H3
ensures that the random perturbations locally go in all directions. In particular,
there is a positive probability of absorbtion when the Markov chain gets close to the
absorbing set. For ecological or evolutionary models, this assumption corresponds to
a species or a genotype going extinct with positive probability when their density
or frequency is to low. H4 is a mild regularity assumption about the transition
kernel of the Markov chain. When ∂M = ∅, Xε

n satisfying H1-H4 corresponds to
a small random perturbation of f in the sense of Ruelle [13].

We introduce the following definition.

Definition 1. ∂M is almost surely absorbing for f if for all x ∈ M

P ε
x(Xε

n ∈ ∂M for all n sufficiently large) = 1

whenever ε > 0 is sufficiently small.

For models of interacting populations, almost surely absorbing corresponds to one
or more populations going to extinct with probability one. The following theorem
characterizes almost sure absorbtion via attractors of f .

Theorem 1. Assume f is dissipative, ∂M is a closed invariant set, and Xε
n satisfies

H1–H4. Then ∂M is almost surely absorbing if and only if f has no attractors
contained in M◦. Moreover, if A ⊂ M◦ is an attractor and K ⊂ B(A) is compact,
then there exists ε0 > 0 and η > 0 such that

P (lim inf
n→∞

dist(Xε
n, ∂M) ≥ η|Xε

0 = x) = 1

for all x ∈ K and ε ∈ [0, ε0).

For models of population processes, Theorem 1 implies that coexistence requires,
at the very least, the existence of an attractor bounded away from extinction. Fur-
ther implications for coexistence are discussed in Section 3.
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2. Proof of Theorem 1. The proof consists of combining two deterministic in-
gredients with one probabilistic ingredient. For the deterministic ingredients of the
proof, two results about chain recurrence are needed. Recall, an ε chain from x to
y of length n is a set of points x1 = x, x2, . . . , xn = y such that d(f(xi), xi+1) < ε
for i = 1, 2, . . . , n − 1. x chains to y if there exists an ε chain from x to y for all
ε > 0. A standard result about attractors and ε-chains is the following (for a proof,
see for example, [14, Proposition 1]).

Proposition 1. Let A be an attractor with basin of attraction B(A) and U ⊂ V be
neighborhoods of A such that the closure V of V is compact and contained in B(A).
Then there exists N ≥ 0 and ε > 0 such that every ε chain of length n ≥ N starting
in V ends in U .

For x ∈ M , define Ω(x) to be the collection of points y ∈ M such that for all
ε > 0 and n ≥ 0 there exists an ε chain from x to y of length at least n. The
following proposition is the key deterministic ingredient for the proof of Theorem 1.

Proposition 2. Let f be dissipative. If f has no attractors contained in M◦, then
Ω(x) ∩ ∂M 6= ∅ for all x ∈ M .

While a proof of this proposition can be found in [14], it is included here for the
convenience of the reader.

Proof. Let x ∈ M be given. Since f is dissipative, there exists a global attractor
Γ such that B(Γ) = M . Let K be the intersection of all attractors that contain
Ω(x). We begin by proving that Ω(x) = K. The proof follows Conley [3] who
proved the analogous statement for continuous flows. The proof is included for the
reader’s convenience. By definition, Ω(x) ⊂ K. To see that K ⊂ Ω(x), define
Ω(x, ε, n) to be the set of points y such that there exists an ε chain of length
at least n from x to y. Ω(x, ε, n) is an open set. Moreover, since Γ is a global
attractor, Proposition 1 implies that Ω(x, ε, n) is compact for ε > 0 sufficiently small.
Moreover, we claim that f(Ω(x, ε, n)) ⊂ Ω(x, ε, n). Indeed, given z ∈ Ω(x, ε, n),
continuity of f implies that there exists y ∈ Ω(x, ε, n) such that d(f(z), f(y)) <
ε. Since y ∈ Ω(x, ε, n), there exists an ε chain, x1 = x, x2, . . . , xm = y, with
m ≥ n. Since d(f(z), f(y)) < ε, we get that x1 = x, x2, . . . , xm = y, xm+1 =
f(z) is an ε chain from x to f(z) of length m + 1. Hence, f(z) ∈ Ω(x, ε, n) and
f(Ω(x, ε, n)) ⊂ Ω(x, ε, n). Since fm(Ω(x)) = Ω(x) ⊂ Ω(x, ε, n) for all m, A(ε, n) =
∩m≥1f

m(Ω(x, ε, n)) is an attractor containing Ω(x) whenever ε > 0 is sufficiently
small. Hence, K ⊂ A(ε, n). Since Ω(x) = ∩n≥1,ε>0Ω(x, ε, n) and Ω(x) ⊂ K ⊂
A(ε, n) ⊂ Ω(x, ε, n), we get Ω(x) = K = ∩n≥1,ε>0A(ε, n).

Suppose that f has no attractors in M◦. Let F be the collection of sets

{A ∩ ∂M : A is an attractor containing Ω(x)}
Since finite intersections of attractors are attractors and f has no attractors in M◦

(i.e. every attractor intersects ∂M), F satisfies the finite intersection property.
Compactness of Γ implies that intersection of all sets in F is non-empty. Since the
intersection of all sets in F is Ω(x) ∩ ∂M , Ω(x) ∩ ∂M 6= ∅.

The probabilistic ingredient of the proof is given by the following proposition.

Proposition 3. Let x ∈ M chain to a point y ∈ ∂M . Then for any ε > 0 there
exists a neighborhood U of x and β > 0 such that

P (Xε
n ∈ ∂M for all n sufficiently large|Xε

0 = z) ≥ β
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for all z ∈ U .

Proof. Let δ = δ(ε) > 0 be as given by H3. Let x0 = x, x1, . . . , xn = y be a δ
chain from x to a point y ∈ ∂M . H3 implies that there exists γn > 0 such that
P ε

xn−1
(N(xn, γn)∩∂M) > 0. H4 implies that there exist γn−1 > 0 and αn > 0 such

that P ε
z (N(xn, γn) ∩ ∂M) ≥ αn for all z ∈ N(xn−1, γn−1). H3 and H4 imply that

there exist γn−2 > 0 and αn−1 > 0 such that P ε
z (N(xn−1, γn−1)) ≥ αn−1 for all

z ∈ N(xn−2, γn−2). Continuing in this manner, we get for i = 1, . . . , n−2 there exist
γi−1 > 0 and αi > 0 such that P ε

z (N(xi, γi)) ≥ αi for all z ∈ N(xi−1, γi−1). Define
U(i) = N(xi, γi) for i = 0, 1, . . . , n − 1, U(n) = N(y, γn) ∩ ∂M , and α = mini αi.
We claim that

P (Xε
n ∈ U(n)|Xε

0 = z) ≥ αn for all z ∈ U(1). (1)

Choosing U = U(1) and β = αn implies the main statement of the proposition. To
prove (1) notice that

P (Xε
n ∈ U(n)|Xε

0 = z) =
∫

. . .

∫
P ε

zn−1
(U(n)) dP ε

zn−2
(zn−1) . . . dP ε

z (z1).

Since P ε
z (U(n)) ≥ α1U(n−1)(z) for all z ∈ M , we get that

P (Xε
n ∈ U(n)|Xε

0 = z) ≥ α

∫
. . .

∫
1U(n−1)(zn−1) dP ε

zn−2
(zn−1) . . . dP ε

z (z1)

= α

∫
. . .

∫
P ε

zn−2
(U(n− 1)) dP ε

zn−3
(zn−2) . . . dP ε

z (z1).

Similarly, applying the estimates P ε
z (U(n−i)) ≥ α1U(n−i−1)(z) for i = 1, 2, . . . , n−1

yields (1).

With these propositions in hand, we are ready to prove Theorem 1. First, let us
assume that there are no attractors in M◦ for f . We will show that ∂M is almost
surely absorbing. Let x ∈ M . Since f is dissipative, there exists an attractor A
such that B(A) = M . Choose neighborhoods U ⊂ V of A with compact closure
such that x ∈ V . Choose N ≥ 1 and ε > 0 as given by Proposition 1. H1 and
Proposition 1 imply that Xε

n ∈ U for all n ≥ N with probability one. Without
loss of generality, we assume that N = 1. Proposition 2 implies that all points in
M chain to points in ∂M . Hence, by Proposition 3 for all y ∈ M there exists a
neighborhood Uy of y and βy > 0 such that

P (Xε
n ∈ ∂M for all n sufficiently large|Xε

0 = z) ≥ βy

for all z ∈ Uy. Compactness of U implies there exists β > 0 such that

P (Xε
n ∈ ∂M for all n sufficiently large|Xε

0 = z) ≥ β

for all z ∈ U . Next we apply the following standard result in Markov chain theory
(see e.g. Theorem 2.3 in Chapter 5 in [4]) to Xn = Xε

n, B = ∂M and C = U ∩M◦

Proposition 4. Let X be a Markov chain and suppose that

P

( ∞⋃
m=n+1

{Xm ∈ B}
∣∣∣Xn

)
≥ β > 0 on {Xn ∈ C}.

Then

P ({Xn enters C infinitely often} \ {Xn enters B infinitely often}) = 0.
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It follows that

P (Xε
n enters U ∩M◦ infinitely often|Xε

0 = x) = 0

and, consequently, H2 implies

P (Xε
n ∈ ∂M for all n sufficiently large|Xε

0 = x) = 1

Since x ∈ M was arbitrary, we have shown that ∂M is almost-surely absorbing for
f .

To prove the other direction of Theorem 1, let us assume that there exists an
attractor A ⊂ M◦. Let x ∈ B(A) and Xε

0 = x. Since A ⊂ M◦ and f(∂M) ⊂ ∂M ,
B(A) ⊂ M◦. Let U ⊂ V be neighborhoods of A with compact closure such that
x ∈ V and V ⊂ B(A). Let N and ε > 0 be as given by Proposition 1. For any
n ≥ 1, H1 implies that Xε

0, . . . X
ε
n with probability one defines an ε chain of length

n + 1 starting at x. Hence, Proposition 1 implies that Xε
n ∈ U ⊂ M◦ for all n ≥ N

with probability one. In particular, there exists η > 0 (e.g. η = dist(U, ∂M)) such
that

P (dist(Xε
n, ∂M) ≥ η for n ≥ N |Xε

0 = x) = 1

for all x ∈ U .

3. Applications.

3.1. Evolutionary bimatrix games. As an application of Theorem 1, consider an
evolutionary game consisting of two populations engaging in asymmetric contests.
In the first population (respectively second population), individuals can play one
of n (respectively m) strategies and the frequency of individuals playing strategy i
is xi (respectively yi). After a contest between an individual playing strategy i in
the first population and an individual playing strategy j in the second population,
the payoff for strategy i (respectively j) is aij (respectively bji). If A = (aij) and
B = (bij), then the evolutionary dynamics are given by (see, e.g., [9])

dxi

dt
= xi((Ay)i − x ·Ay) i = 1, . . . , n (2)

dyj

dt
= yj((Bx)j − y ·Bx) j = 1, . . . ,m.

Let

M = {(x, y) : x ∈ Rn, y ∈ Rm, xi ≥ 0, yi ≥ 0,
∑

i

xi = 1,
∑

j

yj = 1} (3)

Points in M correspond to pairs of distributions of strategies for the two populations.
Extinction of one or more strategies in either population corresponds to the set

∂M = {x ∈ M :
∏

i

xi

∏

j

yj = 0} (4)

To apply Theorem 1, let φt denote the flow of (2) and f = φh for some h > 0.
Eshel and Akin [5, page 133] (see, also, Hofbauer [8]) have shown that φt is volume
preserving. Hence, there can be no attractors for f in M◦ and Theorem 1 implies
the following corollary.

Corollary 1. Let φt be the flow of (2), f = φh for some h > 0, M be given by (3),
and ∂M be given by (4). Then ∂M is almost surely absorbing.
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Hence for these bimatrix games, the inclusion of small random perturbations
results in the eventual demise of one or more strategies. In fact, applying this
argument inductively on the skeleton of ∂M implies the inclusion of small random
perturbations preserving strategy extinction results in the eventual demise of all but
one strategy in each population. Hofbauer [7, 8] has also introduced a ‘canonical’
discrete-time analog of (2) with the map f = (g, h) : M → M given by

gi(x, y) = xi
(Ay)i

x ·Ay
i = 1, . . . , n (5)

hj(x, y) = yj
(Bg(x, y))j

y ·Bg(x, y)
j = 1, . . . ,m

and has shown that this map preserves volume. Hence, for this map, ∂M is also
almost surely absorbing.

3.2. Uniform persistence and random perturbations. Assume that f is dis-
sipative. f is uniformly persistent or permanent [12] if there exists an attractor
A ⊂ M◦ such that B(A) = M◦. Equivalently, there exists a η > 0 such that
lim infn→∞ dist(fnx, ∂M) ≥ η for all x ∈ M◦. Recall an invariant set A ⊂ M is
isolated if there is a closed neighborhood U of A such that A is the largest invari-
ant set in U . Hofbauer and So [10, Theorem 2.1] have shown that a dissipative
map f is uniformly persistent if and only if ∂M is isolated and W s(∂M) ⊂ ∂M
where W s(∂M) = {x ∈ M : ω(x) ⊂ ∂M}. Using this characterization of uniform
persistence and Theorem 1, we get the following corollary.

Corollary 2. Assume f is dissipative, ∂M is a closed isolated set, and Xε
n satisfies

H1–H4. If f is uniformly persistent, then there exists η > 0 such that for all
x ∈ M◦

P (lim inf
n→∞

dist(Xε
n, ∂M) ≥ η|Xε

0 = x) = 1

whenever ε > 0 is sufficiently small. If f is not uniformly persistent, then for all
ε > 0 there exist an open set U ⊂ M◦ and β > 0 such that

P (Xε
n ∈ ∂M for all n sufficiently large|Xε

0 = x) ≥ β

for all x ∈ U .

Proof. Assume f is uniformly persistent. Then applying the second statement of
Theorem 1 to K = {x} for x ∈ M◦ implies the first statement of the corollary.

Assume f is not uniformly persistent. Since ∂M is isolated, Theorem 2.1 of
Hofbauer and So [10] implies there exists x ∈ M◦ such that ω(x) ⊂ ∂M . In
particular x chains to a point y ∈ ∂M . Applying Proposition 3 completes the proof
of the corollary.
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