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Abstract

A class of equations describing the dynamics of two prey sharing a common predator are

considered. Even though the boundary and internal dynamics can exhibit oscillatory behavior,

it is shown these equations are permanent if only if they admit a positive equilibrium. Going

beyond permanence, a subclass of equations are constructed that are almost surely permanent

but not permanent; there exists an attractor in the positive orthant that attracts Lebesgue

almost every (but not every) initial condition.

r 2003 Elsevier Inc. All rights reserved.

Keywords: Permanence; Almost sure permanence; Non-equilibrium coexistence; Apparent competition

1. Introduction

The processes and mechanisms underlying coexistence in ecological communities
can be understood by examining specific modular based interactions. One module
that has attracted interest is known as ‘‘apparent competition.’’ Unlike exploita-
tive competition that involves two species competing for a limiting resource, this
module involves two prey species that share a common natural enemy. Using
differential and difference equation models, Holt [12–14] has shown that the
introduction of the alternate prey into a predator-prey subsystem leads to a
reduction in the other prey’s equilibrium density. To an observer unaware of the
shared predator, the two prey species appear to be competing. Since its introduction,
apparent competition has been recognized as an important indirect interaction that
structures ecological communities. A recent search for ‘‘apparent competition’’ on
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Cambridge Scientific Abstracts yields 101 papers since 1991 making use of the term.
Most of these articles provide experimental and field studies illustrating apparent
competition. For instance, in field experiments on nesting birds, Hoi and Winkler
[10] showed that predation rate increased with nest density when only a single prey
was present and an increase in the density of one nest type increased the predation
rate on another type. In grape vineyards, Karban [18] and colleagues found releases
of economically unimportant Willamette mites alone, or of predatory mites alone,
failed to significantly reduce populations of the damaging Pacific spider mite.
However, where both herbivorous Willamette mites and predatory mites were
released together populations of Pacific mites were reduced. They concluded that
‘‘apparent competition between Willamette mites and Pacific mites, mediated
through their shared predator, can be an important force in the agroecosystems.’’

In this article, we investigate two forms of coexistence for models of two species
sharing a common natural enemy. The first form of coexistence corresponds to
robust permanence: the existence of a global attractor in the positive cone that
persists following sufficiently small structural perturbations. The second form of
coexistence is what Jansen and Sigmund [17] called almost sure permanence: there
exists a positive attractor whose basin of attractor is Lebesgue almost every point in
the positive cone. The remainder of this article is structured as follows. In Section 2,
we introduce the class of equations of interest, prove several facts about their
equilibria, introduce some dynamical systems terminology, and verify the equations
are dissipative. In Section 3, we show these equations are robustly permanent if only
if they admit a positive equilibrium. In Section 4, we construct a class of equations
that are not permanent, but are almost surely permanent. In Section 5, we make
some concluding remarks and pose an open question.

2. Assumptions and background

Consider the dynamics of two non-interacting prey consumed by a single predator

dxi

dt
¼ xi fiðxiÞ � aixiygðx1; x2Þ ¼: xipiðx1; x2; yÞ i ¼ 1; 2;

dy

dt
¼ yhðx1; x2Þ; ð1Þ

where xi is the density of prey i; y is the predator density, fiðxiÞ is the per-capita
growth rate of prey i in the absence of the predator, ai40 is the searching efficiency
of the predator with respect to prey i; gðx1; x2Þ is the fraction of predators actively
searching (i.e. the unsatiated predators), and hðx1; x2Þ is the per-capita growth rate of
the predator. The functions piðx1; x2; yÞ with i ¼ 1; 2 are the per-capita growth rates
of the prey.

Eq. (1) defines a differential equation on the non-negative cone of R3;

C ¼ fx ¼ ðx1; x2; yÞAR3 : x1X0; x2X0; yX0g:
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The interior of this non-negative cone is the positive cone

Cþ ¼ fx ¼ ðx1; x2; yÞAC : x1x2y40g

and the boundary of C corresponding to one or more species being extinct is given by

@C ¼ fx ¼ ðx1; x2; yÞAC : x1x2y ¼ 0g:

2.1. Standing assumptions

A function f : ½0;NÞ-R is concave if

f ðax þ ð1� aÞyÞXa f ðxÞ þ ð1� aÞ f ðyÞ ð2Þ

for all x; yA½0;NÞ and aAð0; 1Þ: f is strictly concave if the X in (2) is replaced by a
4: About (1) we make the following assumptions for the remainder of this article.

A1. The functions xipiðx1; x2; yÞ and hðx1; x2Þ are continuously differentiable.
A2. fið0Þ40: In other words, the intrinsic rate of growth rate of each prey is

positive.
A3. fiðxiÞ are decreasing concave functions.
A4. There exist Ki40 such that fiðKiÞ ¼ 0; Ki corresponds to the carrying capacity

of prey i:
A5. gðx1; x2Þ is a positive function non-increasing both in x1 and x2: In other words,

the number of satiated predators does not decrease in the presence of more prey.
A6. hðx1; x2Þ increases in both x1 and x2; and hðx1; 0Þ and hð0; x2Þ are concave.
A7. hð0; 0Þo0 and there exists L40 such that hðL; 0Þ40 and hð0;LÞ40: In other

words, in the absence of any prey, the predators are doomed to extinction and
when each prey is sufficiently abundant, the predator’s per-capita growth rate is
positive.

2.2. Examples

Two important families of equations that satisfy these assumptions are Lotka–
Volterra equations and y-Logistic-Holling predator–prey equations.

Lotka–Volterra equations. The functions fiðxiÞ ¼ rið1� xi=KiÞ; gðx1; x2Þ ¼ 1; and
hðx1; x2Þ ¼ b1x1 þ b2x2 � c give the Lotka–Volterra equations

dxi

dt
¼ rixið1� xi=KiÞ � aixiy i ¼ 1; 2;

dy

dt
¼ b1x1y þ b2x2y � cy; ð3Þ

where bi=ai is the efficiency at which the predator converts prey i eaten to new
predators and c is the predator per-capita mortality rate. The dynamics of these
equations were investigated by Vandermeer [24].
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y-Logistic-Holling equations. The functions fiðxiÞ ¼ rið1� ðxi=KiÞyiÞ with yiX1;

gðx1; x2Þ ¼ 1
1þb1x1þb2x2

; and hðx1; x2Þ ¼ c1x1þc2x2
1þb1x1þb2x2

� d give the y-Logistic-Holling

[6,11] equations

dxi

dt
¼ rixið1� ðxi=KiÞyiÞ � aixiy

1þ b1x1 þ b2x2
i ¼ 1; 2;

dy

dt
¼ yðc1x1 þ c2x2Þ

1þ b1x1 þ b2x2
� dy;

where ci=ai is the efficiency at which the predator converts prey i eaten to new
predators, bi=ai is the time it takes the predator to handle prey i; and d is the per-
capita predator mortality rate.

2.3. The equilibria

Prior to studying the dynamics of (1), we prove several properties about the
equilibria. The first property is well-known and corresponds to the fact if the
predator has a positive per-capita growth rate when a prey is at its carrying capacity,
then the predator–prey pair can coexist at a unique equilibrium.

Lemma 1. If hðK1; 0Þ40 (respectively hð0;K2Þ40), then there exists a unique positive

equilibrium ðx�
1; y�

1Þ (resp. ðx�
2; y

�
2ÞÞ for (1) in the x1–y (resp. x2–y) plane.

Proof. Since hðx1; 0Þ is increasing, hð0; 0Þo0; and hðK1; 0Þ40; there exists a unique
x�
140 such that hðx�

1; 0Þ ¼ 0: Since any equilibrium ðx�
1; y�

1Þ in the x1–y plane must

satisfy p1ðx�
1; 0; y�Þ ¼ f1ðx�

1Þ � a1y
�
1gðx�

1; 0Þ ¼ 0; y�
1 ¼ f1ðx�

1Þ=ða1gðx�
1; 0ÞÞ is uniquely

defined. &

Next we prove two lemmas concerning equilibria that support all three species.
These lemmas characterize under what conditions such an equilibrium exists. They
also reiterate an observation (i.e. x��

1 ox�
1 and x��

2 ox�
2) made by Holt [12] which lead

to his original formulation of ‘‘apparent competition.’’

Lemma 2. Assume hðK1; 0Þ40 and hð0;K2Þp0: Eq. (1) has an equilibrium

ðx��
1 ; x��

2 ; y��Þ in Cþ if and only if f2ð0Þ=a24f1ðx�
1Þ=a1: Moreover, when this equilibrium

ðx��
1 ; x��

2 ; y��Þ exists, it is unique and satisfies x��
1 ox�

1 and x��
2 oK2:

Proof. Since h is increasing with respect to both arguments, implicit differentiation
implies that there is a decreasing function %x2ðx1Þ defined on the interval ½0; x�

1

satisfying hðx1; %x2ðx1ÞÞ ¼ 0; %x2ð0ÞXK2 and %x2ðx�

1Þ ¼ 0: Define the function kðx1Þ ¼
f1ðx1Þ=a1 � f2ð %x2ðx1ÞÞ=a2: Since any positive equilibrium ðx��

1 ; x��
2 ; y��Þ must satisfy

fiðx��
i Þ � aiy

��gðx��
1 ; x��

2 Þ ¼ 0 for i ¼ 1; 2; it follows that kðx��
1 Þ ¼ 0: Since k0ðx1Þ ¼

f 0
1ðx1Þ=a1 � f 0

2ð %x2ðx1ÞÞ %x0
2ðx1Þ=a2o0; there exists at most one value of x1 such that
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kðx1Þ ¼ 0: Since kðx�
1Þ ¼ f1ðx�

1Þ=a1 � f2ð0Þ=a2 and kð0Þ ¼ f1ð0Þ=a1 � f2ð %x2ð0ÞÞ=
a2Xf1ð0Þ=a1 � f2ðK2Þ=a2 ¼ f1ð0Þ=a140; there exists a solution to kðx1Þ ¼ 0 with
x1Að0; x�

1Þ if and only if f1ðx�
1Þ=a1of2ð0Þ=a2: When this solution x��

1 exists, we have

x��
2 ¼ %x2ðx��

1 Þ40 and y�� ¼ f1ðx��
1 Þ=ða1gðx��

1 ; x��
2 ÞÞ: &

Lemma 3. Assume hðK1; 0Þ40 and hð0;K2Þ40: Eq. (1) has an equilibrium

ðx��
1 ; x��

2 ; y��Þ in Cþ if and only if f2ð0Þ=a24f1ðx�
1Þ=a1 and f1ð0Þ=a14f2ðx�

2Þ=a2:
Moreover, when this equilibrium exists, it is unique and satisfies x��

1 ox�
1

and x��
2 ox�

2:

Proof. The proof of this lemma is very similar to proof of Lemma 2. Implicit
differentiation implies there exists a decreasing function %x2 defined on ½0; x�

1

such that hðx1; %x2ðx1ÞÞ ¼ 0; %x2ð0Þ ¼ x�

2; and %x2ðx�
1Þ ¼ 0: Define kðx1Þ ¼ f1ðx1Þ=a1 �

f2ð %x2ðx1ÞÞ=a2: kðx1Þ is decreasing and x��
1 must satisfy kðx��

1 Þ ¼ 0: Without

loss of generality, we may assume that f1ð0Þ=a1Xf2ð0Þ=a2: Since f2ðx2Þ
is a decreasing function, it follows that f1ð0Þ=a14f2ðx�

2Þ=a2: Hence

kð0Þ ¼ f1ð0Þ=a1 � f2ðx�
2Þ=a240: Therefore, kðx1Þ equals zero on the

interval ð0; x�
1Þ if and only if 04kðx�

1Þ ¼ f1ðx�
1Þ=a1 � f2ð0Þ=a2: When this

solution x��
1 Að0; x�

1Þ to kðx1Þ ¼ 0 exists, we have x��
2 ¼ %x2ðx��

1 Þ40 and

y�� ¼ f1ðx��
1 Þ=ða1gðx��

1 ; x��
2 ÞÞ: &

2.4. Dynamical background and dissipativeness

Standard theorems of differential equations imply that solutions to (1) define a
(local) flow f : U-C for some open subset UCR� C: Let ftðxÞ ¼ fðt; xÞ:
Given sets IDR and KDC; let fI K ¼ fftx: tAI ; xAKg: A set KDC is called
invariant if ftK ¼ K for all tAR: The omega limit set of a set KDC equals

oðKÞ ¼
T

tX0 f½t;NÞK : The alpha limit set of a set KDC equals aðKÞ ¼T
tp0 fð�N;t
K : Given an invariant set K ; ACK is called an attractor for

fjK provided there exists an open neighborhood UDK of A such that oðUÞ ¼ A:
The basin of attraction of A for fjK is the set of points xAK such that oðxÞDA: The
flow f is dissipative if there exists a compact attractor ACC for f whose basin of
attraction is C:

Using a standard argument, the following lemma proves that (1) is dissipative.

Lemma 4. Eq. (1) is dissipative.

Proof. Since piðx1; x2; yÞo0 whenever xi4Ki; all solutions to (1) eventually enter
½0;K1
 � ½0;K2
 � ½0;NÞ: Choose a40 sufficiently large so that �agðx1; x2Þða1x1 þ
a2x2Þ þ hðx1; x2Þo0 for all ðx1; x2Þ in ½0;K1
 � ½0;K2
: Define Sðx1; x2; yÞ ¼ aðx1 þ
x2Þ þ y: Then for e40 sufficiently small and C40 sufficiently large we get
’S þ eSpC for ðx1;x2; yÞA½0;K1
 � ½0;K2
 � ½0;NÞ: Thus, all solutions eventually

enter and remain in the compact set S�1ð½0; 2C=e
Þ: &

ARTICLE IN PRESS
S.J. Schreiber / J. Differential Equations 196 (2004) 209–225 213



3. Permanence

A strong notion of coexistence is permanence that ensures populations persist
despite large perturbations of the initial conditions. More formally, Eq. (1) is
permanent if (1) is dissipative and admits a compact attractor KCCþ whose basin of
attraction is Cþ [15,16,23]. Permanence for dissipative systems is also known as
uniform persistence [1,2,5]. As any sensible definition of coexistence should be robust
to sufficiently small perturbations of the governing equations themselves, (1) is called

robustly permanent if there exists a C1 neighborhood of (1) in the C1 Whitney
topology (see, e.g., [7]) such that every vector field in this neighborhood is
permanent. In this section, we provide sufficient and necessary conditions for robust
permanence of (1).

Theorem 1. Assume hðK1; 0Þ40 and hð0;K2Þp0: Eq. (1) is robustly permanent if and

only if f2ð0Þ=a24f1ðx�
1Þ=a1 (see Fig. 1(a)).

Theorem 2. Assume hðK1; 0Þ40 and hð0;K2Þ40: Eq. (1) is robustly permanent if and

only if f2ð0Þ=a24f1ðx�
1Þ=a1 and f1ð0Þ=a14f2ðx�

2Þ=a2 (see Fig. 1(b)).

Even though the predator–prey subsystems may exhibit periodic solutions,
these theorems imply that permanence is determined solely by invasion
criteria evaluated at the equilibria. Furthermore, combining Theorems 1 and
2 with Lemmas 2 and 3, we get the following simple characterization of robust
permanence.

Theorem 3. Eq. (1) is robustly permanent if and only if there exists an

equilibrium in Cþ:

Proof. Suppose (1) is robustly permanent. By the Permanence Index Theorem [9],
there exists an equilibrium in Cþ: On the other hand, suppose there is a positive
equilibrium in Cþ: Lemmas 2 and 3 imply that the conditions of either Theorem 1 or
Theorem 2 are satisfied. Hence, (1) is robustly permanent. &

To prove Theorems 1 and 2, we use an earlier result on robust permanence.
Recall, a compact invariant set K is called isolated if there exists a neighborhood V

of K such that K is the maximal compact invariant set in V : A collection
of sets fM1;y;Mkg is a Morse decomposition for a compact invariant set
K if M1;y;Mk are pairwise disjoint, compact isolated invariant sets for fjK with
the property that for each xAK there are integers l ¼ lðxÞpm ¼ mðxÞ such that
aðxÞDMm and oðxÞDMl and if l ¼ m then xAMl ¼ Mm: Theorem 4.3 of the author
[22] implies

Theorem 4. Let p3ðx1; x2; yÞ :¼ hðx1; x2Þ and LC@C be the maximal compact

invariant set for the flow of (1) restricted to @C: If L admits a Morse decomposition
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fM1;y;Mkg such that for all 1pjpk there exists an 1pip3 satisfying

inf
xAMj

lim inf
T-N

1

T

Z T

0

piðftxÞ dt40; ð4Þ

then (1) is robustly permanent.
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(a)

(b)

Fig. 1. Boundary dynamics of (1) for Theorems 1 and 2.

S.J. Schreiber / J. Differential Equations 196 (2004) 209–225 215



Proof of Theorem 1. Assume f2ð0Þ=a24f1ðx�
1Þ=a2: Lemma 4 implies there is a global

attractor L for fj@C which is contained in ½0;K1
 � ½0;K2
 � ½0;NÞ: Since the
predator prey subsystem x1–y is permanent, there exists a compact attractor A in the
positive quadrant of the x1–y plane such that A’s basin of attraction is the positive
quadrant of the x1–y plane. On the other hand, since all solutions of (1) in the x2–y

plane eventually enter and remain in the strip ½0;K2
 � ½0;NÞ; hð0;K2Þp0 and
hð0; x2Þ is a decreasing function of x2; L intersected with the x2–y plane is contained
in the interval ½0;K2
 on the x2 axis. Since (1) is uncoupled in the x1–x2 plane, the
equilibrium ðK1;K2; 0Þ is an attractor in the x1–x2 plane whose basin of attraction is
the positive quadrant of the x1–x2 plane. These facts imply that a Morse
Decomposition for L is given by ð0; 0; 0Þ; ðK1; 0; 0Þ; ð0;K2; 0Þ; ðK1;K2; 0Þ and A

(see Fig. 1(a)).
We will show that each component of this Morse decomposition satisfies (4) for an

appropriate choice of 1pip3: Since p1ð0; 0; 0Þ ¼ p1ð0;K2; 0Þ40 and p3ðK1;K2; 0Þ ¼
hðK1;K2Þ4p3ðK1; 0; 0Þ ¼ hðK1; 0Þ40; the equilibria ð0; 0; 0Þ; ð0;K2; 0Þ; ðK1; 0; 0Þ;
and ðK1;K2; 0Þ satisfy (4) with i ¼ 1 and 3. To show that A satisfies (4) for i ¼ 2; we
need the following lemma.

Lemma 5. Assume hðK1; 0Þ40: If xðtÞ ¼ ðx1ðtÞ; 0; yðtÞÞ is a solution to (1) with

x1ð0Þ40 and yð0Þ40; then

lim inf
T-N

1

T

Z T

0

p2ðxðtÞÞ dtXp2ðx�
1; 0; y�

1Þ ¼ f2ð0Þ �
a2

a1
f1ðx�

1Þ:

Furthermore, the inequality is a strict if hðx1; 0Þ is strictly concave and

ðx�
1; 0; y�

1Þeoðxð0ÞÞ:

Proof. Let xðtÞ ¼ ðx1ðtÞ; 0; yðtÞÞ be a solution to (1) with x1ð0Þ40 and yð0Þ40:
Since A only contains a single equilibrium, the Poincaré–Bendixson theorem implies
that the o-limit set of xð0Þ is either a periodic orbit or contains the equilibrium
ðx�

1; 0; y�
1Þ: Hence, for and any continuous function p : C-R; the limit

pðxðtÞÞ :¼ lim
T-N

1

T

Z T

0

pðxðtÞÞ dt

exists. Since A is compact and is contained in the positive quadrant of the x1–y plane,

0 ¼ lim
T-N

1

T
ln

x1ðTÞ
x1ð0Þ

� �
¼ x0

1ðtÞ
x1ðtÞ

¼ p1ðxðtÞÞ

and

0 ¼ lim
T-N

1

T
ln

yðTÞ
yð0Þ

� �
¼ y0ðtÞ

yðtÞ ¼ p3ðxðtÞÞ:
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Jensen’s inequality and concavity of hðx1; 0Þ imply that 0 ¼ p3ðxðtÞÞ ¼
hðx1ðtÞ; 0Þphðx1ðtÞ; 0Þ: The inequality is strict if ðx�

1; 0; y�
1Þeoðxð0ÞÞ and hðx1; 0Þ is

strictly concave. Since h is increasing in its first argument and hðx�
1; 0Þ ¼ 0; x1ðtÞXx�

1:

Concavity of f1 and Jensen’s inequality implies that f1ðx1ðtÞÞpf1ðx1ðtÞÞpf1ðx�
1Þ:

Since p1ðxðtÞÞ ¼ f1ðx1ðtÞÞ � a1yðtÞgðx1ðtÞ; 0Þ ¼ 0 and f1ðx�
1Þ ¼ a1y

�
1gðx�

1; 0Þ;

p2ðxðtÞÞ ¼ f2ð0Þ � a2yðtÞgðx1ðtÞ; 0Þ

¼ f2ð0Þ �
a2

a1
f1ðx1ðtÞÞ

X f2ð0Þ �
a2

a1
f1ðx�

1Þ ¼ p2ðx�
1; 0; y�

1Þ: &

The assumption p2ðx�
1; 0; y�Þ ¼ f2ð0Þ � a2 f1ðx�

1Þ=a140 in conjunction with Lemma 5

implies that (4) holds for A with i ¼ 2: Applying Theorem 4 completes the
proof. &

Proof of Theorem 2. Proof of this theorem is very similar to the previous theorem.
The main difference is that the Morse decomposition of L has an additional
component consisting of a compact set in the interior of the x2–y plane (see Fig.
1(b)). The details are left to the reader. &

4. Non equilibrium coexistence

The previous results imply that permanence and equilibrium coexistence are
equivalent. However, these results do not rule out non-equilibrium coexistence in the
absence of a positive equilibrium. In this section, we show there is an open class of
equations that are not permanent, have no positive equilibria, and have an attractor
in Cþ whose basin of attraction is almost every point in C: The approach we take is
similar conceptually to the work of McGehee and Armstrong [19] who constructed
an example of non-equilibrium coexistence for competing species by perturbing
several times a system of Lotka–Volterra equations. The approach taken
here differs in several key ways. It begins with an unstable and non-dissipative
system. This system contains a line segment of equilibria that passes through
the positive orthant and that is a normally hyperbolic repellor. Dissipativeness is
added one prey–predator subsystem at a time in a somewhat delicate way to
ensure that (1) the perturbed line segment turns into a connecting orbit between the
positive equilibria in the predator–prey subsystems, (2) all positive equilibria are
destroyed, and (3) the missing prey can invade the periodic orbits for each predator-
prey subsystem.

Theorem 5. Let f : ½0;NÞ-R be a continuously differentiable decreasing concave

function satisfying f ð0Þ40 and f ð1Þ ¼ 0: Let g : ½0;NÞ-½0;NÞ be a continuously
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differentiable decreasing function. Let h : ½0;NÞ-R be a continuously differentiable,
strictly convex, increasing function satisfying hð0Þo0 and N4limx1-Nhðx1Þ40:

Then there exist Ki40 and ai40 for i ¼ 1; 2 such that

dxi

dt
¼ xi f ðxi=KiÞ � aixiygðx1 þ x2Þ;

dy

dt
¼ yhðx1 þ x2Þ ð5Þ

has no equilibria in Cþ; is not permanent, and admits a compact attractor ACCþ
whose basin of attraction is Lesbegue almost every point in Cþ: Furthermore, these

assertions are robust to sufficiently small perturbations to (5) in the C1 Whitney

topology.

To prove this theorem, we recall definitions about attractor/repellor blocks and
normally hyperbolic repellors. An attractor block BCC is a compact set with non-
empty interior such that for each xA@B; fð0;NÞxCintðBÞ where @ denotes the

boundary and int denotes the interior. It is well-known that every attractor block B

contains an attractor given by oðBÞ and every attractor is oðBÞ for some attractor
block B [3,4,20]. A repellor and repellor block is an attractor and attractor block,
respectively, for the backward flow f�t:

Let M be a compact, connected C1 manifold with boundary. M is a normally

hyperbolic repellor if

* M is invariant
* there exists a continuous Dft-invariant splitting of the tangent bundle of R3

restricted to M; TR3jM ¼ TM"N
* there exist a41 and b40 such that

jjDftðxÞvjjXbatjjDftðxÞwjj

and

jjDftðxÞvjjXbat

for all tX0; xAM; vANx with jjvjj ¼ 1; and wATxM with jjwjj ¼ 1:

Hirsch et al. [8] have shown that normally hyperbolic repellors persist under

sufficiently small C1 perturbations.

Proof. The proof consists of five steps. The first four steps involve successive
perturbations from an initial system of ODEs. The final step proves that the final
perturbation gives us a system with the desired properties.
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Step 1 (see Fig. 2). Consider the differential equation

dxi

dt
¼ xi f ð0Þ � xiygðx1 þ x2Þ;

dy

dt
¼ yhðx1 þ x2Þ: ð6Þ

Given any point u ¼ ðu1; u2ÞA½0;NÞ � ½0;NÞ with u1 þ u2 ¼ 1; define

NðuÞ ¼ fðau1; au2; yÞ: a; yARg:

NðuÞ-C is invariant for (6) and the dynamics of (6) restricted to NðuÞ-C are given
by

da
dt

¼ af ð0Þ � aygðaÞ;

dy

dt
¼ yhðaÞ;

ðx1; x2Þ ¼ aðu1; u2Þ:
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Fig. 2. The dynamics of (6).
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This system is not dissipative and has a non-trivial equilibrium given by

a� ¼ h�1ð0Þ;

y� ¼ f ð0Þ=gða�Þ:

Since the linearization about this equilibrium is given by

�y�g0ða�Þa� �a�gða�Þ
y�h0ða�Þ 0

� �

and g0ða�Þo0; the equilibrium ða�; y�Þ is a hyperbolic source.

The line M ¼ fðx1; x2; y�ÞAC : x1 þ x2 ¼ h�1ð0Þg consists of equilibria for (6).

The tangent bundle of R3 over M splits continuously as TM"N with Nx ¼
Nð x1

x1þx2
; x2

x1þx2
Þ: N is Dft invariant. Since M consists of equilibria, jjDftðxÞwjj ¼ 1

for all xAM and wATxM with jjwjj ¼ 1: Alternatively, since xAM is a
hyperbolic source for the flow restricted to Nx; there exist a41 and b40
such that jjDftðxÞvjjXbat for all t40 and vANx with jjvjj ¼ 1: Hence, M is a
normally hyperbolic repellor for (6).

Step 2. First perturbation (see Fig. 3). Consider

dx1

dt
¼ x1 f ðx1=K1Þ � x1ygðx1 þ x2Þ

dx2

dt
¼ x2 f ð0Þ � x1ygðx1 þ x2Þ

dy

dt
¼ yhðx1 þ x2Þ: ð7Þ
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Choose K1b0 sufficiently large so that the one dimensional manifold M of (6)
connecting the x1–y plane to the x2–y plane persists as a normally hyperbolic
repellor.

For this system, there is a unique positive equilibrium in the x1–y plane
given by

x�
1 ¼ h�1ð0Þ

y�
1 ¼ f ðx�

1=K1Þ=gðx�
1Þ:

At this equilibrium the per-capita growth rate of prey species 1 is zero:

0 ¼ f ðx�
1=K1Þ � y�

1gðx�
1Þ:

In the x2–y plane the positive equilibrium remains unchanged. Several key properties
about (7) are

P1. There is a one-dimensional normally hyperbolic repellor M connecting the
positive equilibrium in the x1–y plane to the positive equilibrium in the x2–y

plane.
P2. At the positive equilibrium in the x1–y plane the per-capita growth rate of prey 2

is positive. This follows from the fact that

f ð0Þ � y�
1gðx�

1Þ4f ðx�
1=K1Þ � y�

1gðx�
1Þ ¼ 0:

P3. At the positive equilibrium in the x2–y plane, the per-capita growth rates of prey
1 and 2 are both zero.

Step 3. Second perturbation (see Fig. 4). The goal of the second perturbation is to
make the entire system dissipative, to preserve properties P1–P3, and destroy any
positive equilibria. Consider

dxi

dt
¼ xi f ðxi=KiÞ � aixiygðx1 þ x2Þ ¼: xipiðx1; x2; yÞ

dy

dt
¼ yhðx1 þ x2Þ ð8Þ

with a2 ¼ 1; and K2 and a1 yet to be defined. For this equation, the unique positive
equilibrium in the xi–y plane is given by

x�
i ¼ h�1ð0Þ

y�
i ¼ f ðx�

i =KiÞ
aigðx�

i Þ
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for i ¼ 1; 2: Given any K2 (yet to be chosen), define

a1 ¼
f ð0Þ

y�
2gðx�

2Þ
¼ f ð0Þ

f ðx�
2=K2Þ

:

Now choose K2 sufficiently large (notice this implies that a1 is close to but not equal to
1) so that P1–P2 remain true. Since the per-capita growth rate of prey 1 at the ðx�

2; y�
2Þ

equilibrium is given by f ð0Þ � a1y
�
2gðx�

2Þ; our choice of a1 implies that P3 still holds.

Lemma 3 implies that there is no equilibrium for (7) in Cþ: It follows that

P4. For any point on M-Cþ , its o-limit set is the positive equilibrium in the x2–y

plane and its a-limit set is the positive equilibrium in the x1–y plane.

Since (7) is dissipative and the equilibria ðx�
i ; y�

i Þ are repellors in the xi–y planes,

P5. For i ¼ 1; 2; there exists a compact attractor Ai in the positive quadrant of the
xi–y plane whose basin of attraction is all points in the positive quadrant of the
xi–y plane except for ðx�

i ; y�
i Þ:

ARTICLE IN PRESS

x1

x2

y

M

R

Fig. 4. The dynamics of (8).
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Our assumption that h is strictly concave, P3; and Lemma 5 imply

inf
xAAi

lim inf
T-N

1

T

Z T

0

pjðftxÞ dt40 i; j ¼ 1; 2 iaj;

where ft denotes the flow of (8). Theorem 1 from the author [21] implies that

P6. There exists a T40 such that

min
xAAi

1

T

Z T

0

pjðftxÞ dt40 i; j ¼ 1; 2 iaj:

Step 4. Final perturbation (see Fig. 4). As a final perturbation, slightly increase the
value of a1 so that P1, P2, P4–P6 continue to be satisfied, but instead of P3 we get

P3�: At the positive equilibrium in the x2–y plane, the per-capita growth rate of prey
1 is negative.

Step 5. The attractor.

Let RCC be a neighborhood of the normally hyperbolic repellor that is a repelling
block. Since the final system of differential equations is dissipative, there exists a
global attractor with an attractor block B1: Define the attractor block B2 ¼ B1\R

which is homeomorphic to a thickened cylinder. Since all orbits in B2 intersecting the
xi–y (i ¼ 1; 2) planes approach the attractor Ai for which P6 holds, we can shrink the
attractor block B2 away from these planes to get an attractor block B3 contained in
Cþ: Furthermore, we can shrink this attractor block in such a way that oðxÞCB3 for
all xACþ\M: The attractor oðB3Þ provides the desired attractor. &

Numerical example

Fig. 5 illustrates a numerical solution to Logistic-Holling equations for which
there is no equilibrium in Cþ but coexistence about a periodic orbit occurs. In this
simulation, we start at a point in Cþ near ðx�

1; 0; y�Þ: The simulation illustrates that

the solution initially tracks the connecting orbit between ðx�
1; 0; y�

1Þ and ðx�
2; 0; y�

2Þ;
then begins to exhibit diverging oscillations between prey 2 and the predator, and
then appears to converge toward a periodic orbit that permits coexistence. Notice
that in this periodic orbit increasing densities of the predator results in the
simultaneous crash of both prey species, a crash in the predator, the recovery of prey
2, the recovery of prey 1, and the recovery of the predator leading once again to the
crash of both prey.

5. Conclusions

In this article, we attempt to understand under what conditions two prey sharing a
common predator can coexist. We showed that coexistence in the sense of
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permanence is equivalent to equilibrium coexistence. We showed that even when
these systems are not permanent, they can be almost surely permanence; there
exists a positive attractor whose basin of attraction contains Lebesgue almost
every initial condition [17]. The construction of these examples were somewhat
delicate and involved controlling the dynamics throughout the non-negative
orthant. It would be very interesting to know under what conditions almost sure
permanence can be deduced from the boundary behavior of the system. More
specifically,

Suppose that hðK1; 0Þ40; hð0;K2Þo0; the positive equilibria ðx�
1; y�

1Þ of (1) is

unstable in the x1–y plane, (1) admits no positive equilibrium, and

lim
T-N

1

T

Z T

0

p2ðftxÞ dt40

for all x ¼ ðx1; 0; yÞaðx�
1; 0; y�

1Þ with x1 y40: Can one deduce that (1) is almost

surely permanent?

A similar question can be posed when hðK1; 0Þ40 and hðK2; 0Þ40:
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Fig. 5. Nonequilibrium coexistence. Numerical solution to dxi
dt

¼ xirið1� xi=3Þ � xiy
1þx1þx2

; dy
dt
¼ yðx1þx2Þ

1þx1þx2
�

0:3y with r1 ¼ 0:8; r2 ¼ 1:0; and initial conditions x1ð0Þ ¼ x�
1 ¼ 3=7; x2ð0Þ ¼ 1=100; and yð0Þ ¼ y�1 ¼

48=49:
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