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ON THE EVOLUTION OF DISPERSAL IN
PATCHY LANDSCAPES∗
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Abstract. To better understand the evolution of dispersal in spatially heterogeneous landscapes,
we study difference equation models of populations that reproduce and disperse in a landscape
consisting of k patches. The connectivity of the patches and costs of dispersal are determined by a
k×k column substochastic matrix S, where Sij represents the fraction of dispersing individuals from
patch j that end up in patch i. Given S, a dispersal strategy is a k×1 vector whose ith entry gives the
probability pi that individuals disperse from patch i. If all of the pi’s are the same, then the dispersal
strategy is called unconditional; otherwise it is called conditional. For two competing populations
of unconditional dispersers, we prove that the slower dispersing population (i.e., the population
with the smaller dispersal probability) displaces the faster dispersing population. Alternatively, for
populations of conditional dispersers without any dispersal costs (i.e., S is column stochastic and all
patches can support a population), we prove that there is a one parameter family of strategies that
resists invasion attempts by all other strategies.
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1. Introduction. Plants and animals often live in landscapes where environ-
mental conditions vary from patch to patch. Within patches, these environmental
conditions may include abiotic factors such as light, space, and nutrient availability
or biotic factors such as prey, competitors, and predators. Since the fecundity and
survivorship of an individual depends on these factors, an organism may decrease or
increase its fitness by dispersing across the environment. Depending on their phys-
iology and their ability to accumulate information about the environment, plants
and animals can exhibit two modes of dispersals and a variety of dispersal strate-
gies. Plants and animals can be active dispersers that move by their own energy
or passive dispersers that are moved by wind, water, or other animals. Passive dis-
persers alter their dispersal rates by varying the likelihood of dispersing and the time
spent dispersing [20]. Dispersal strategies can vary from unconditional strategies in
which the probability of dispersing from a patch is independent of the local envi-
ronmental conditions to conditional strategies in which the likelihood of dispersing
depends on local environmental factors. Understanding how natural selection acts on
these different modes and strategies of dispersal has been the focus of much theoretical
work [2, 5, 8, 10, 12, 15, 16, 17]. For instance, using coupled ordinary differential equa-
tion models for populations passively dispersing between two patches, Holt [8] showed
that slower dispersing populations could always invade equilibria determined by faster
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EVOLUTION OF DISPERSAL 1367

dispersing populations. Hastings [5] and Dockery et al. [2] considered evolution of dis-
persal in continuous space using reaction diffusion equations. Dockery et al. proved
that for two competing populations differing only in their diffusion constant, the popu-
lation with the larger diffusion constant is excluded. In contrast, McPeek and Holt [17]
using a two patch model consisting of coupled difference equations found that “dis-
persal between patches can be favored in spatially varying but temporally constant
environment, if organisms can express conditional dispersal strategies.”

In this article, we consider the evolution of conditional and unconditional dis-
persers for a general class of multipatch difference equations. For these difference
equations, individuals in each patch disperse with some probability. When these proba-
bilities are independent of location, the population exhibits an unconditional dispersal
strategy; otherwise it exhibits a conditional dispersal strategy. For dispersing individ-
uals, the nature of the landscape determines the likelihood Sji that a disperser from
patch i ends up in patch j. Unlike previous studies of the evolution of unconditional
and conditional dispersal [2, 5, 8, 17], we allow for an arbitrary number of patches
and place no symmetry conditions on S. For active dispersers, asymmetries in S
may correspond to geographical and ecological barriers that inhibit movement from
one patch to another. For passive dispersers, these asymmetries may correspond to
asymmetries in the abiotic or biotic currents in which they drift.

Our main goal is to determine what types of theorems can be proved about the
evolution of dispersal for this general class of difference equation models. To achieve
these goals, the remainder of the article is structured as follows. In section 2, we intro-
duce the models. Under monotonicity assumptions about the growth rates, we prove
that either populations playing a single dispersal strategy go extinct for all initial con-
ditions or approach a positive fixed point for all positive initial conditions. We also
introduce models of competing populations that differ only in their dispersal ability
and prove a result about invasiveness. In section 3, we prove that for two competing
populations of unconditional dispersers, the slower dispersing population displaces
the faster dispersing population. The proof relies heavily on proving, in section 4,
monotonicity of the principal eigenvalue for a one-parameter family of nonnegative
matrices. In section 5, we prove that, provided there is no cost to dispersal and all
patches can support a population, there is a one-parameter family of conditional
dispersal strategies that resists invasion from other types of dispersal strategies. Nu-
merical simulations suggest that these strategies can displace all other strategies, and
we prove that these strategies can weakly coexist. In section 6, we discuss our findings
and suggest directions for future research.

2. The models and basic results. Consider a population exhibiting discrete
reproductive and dispersal events and living in an environment consisting of k patches.
The vector of population densities is given by x = (x1, . . . , xk)

T ∈ Rk
+, where Rk

+ is
the nonnegative cone of Rk. To describe reproduction and survival in each patch, let
λi : R+ → R+ denote the per-capita growth rate of the population in the ith patch
as a function of the population density in the ith patch. For these per-capita growth
rates we make the following assumptions.

A1: λi are positive continuous decreasing functions.
A2: limxi→∞ λi(xi) < 1.
A3: xi �→ xiλi(xi) is increasing.

Assumption A1 corresponds to the population exhibiting increasing levels of intra
specific competition or interference as population densities increase. Assumption A2
implies that at high densities the population tends to decrease in size. Assumption A3
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1368 S. KIRKLAND, C.-K. LI, AND S. J. SCHREIBER

implies that the population does not exhibit overcompensating density dependence:
higher densities in the current generation yield higher densities in the next generation.
Many models in the population ecology literature satisfy these three assumptions.
For instance, see the Beverton–Holt model [1] in which λi(xi) = ai

1+bixi
and the Ivlev

model [14] in which λi(xi) = ai(1 − exp(−b xi)).
To describe dispersal between patches, we assume that each individual in patch i

disperses with a probability pi and Sji is the probability that a dispersing individual
from patch i arrives in patch j. About the matrix S we make the following assumption.

A4: S is a k × k primitive column substochastic matrix.
S can be column stochastic if all dispersing individuals migrate successfully or sub-
stochastic if some dispersing individuals experience mortality. The primitive assump-
tion ensures that individuals (possibly after several generations) can move from any
patch to any patch. S characterizes how connected the landscape is for dispersing
individuals. For example, for a fully connected metapopulation, S could be the ma-
trix whose entries all equal 1

k ; i.e., an individual is equally likely to end up in any
patch after dispersing. Alternatively, in a landscape with a one-dimensional lattice
structure with individuals able only to move to neighboring patches in one time step
S is a column substochastic tridiagonal matrix that is primitive, provided it has a
positive entry on the diagonal. From these p and S, the following matrix describes
how the population redistributes itself across the environment in one time step:

Sp = I − diag (p) + S diag (p),

where diag (p) denotes a diagonal matrix with diagonal entries p1, . . . , pk.
If a census of the population is taken before reproduction and after dispersal,

then the dynamics of the population are given by

x′ = SpΛ(x)x =: F (x),(1)

where x′ denotes the population state in the next time step and Λ(x) is the k × k
diagonal matrix whose ith diagonal entry equals λi(xi).

Our first result characterizes the global dynamics of (1). To state this result, let
Fn(x) denote F composed with itself n times. Given x, y ∈ Rk

+, we write x ≥ y if
xi ≥ yi for all 1 ≤ i ≤ k, x > y if x ≥ y and x �= y, and x � y if xi > yi for all
1 ≤ i ≤ k. For a matrix A, let r(A) denote the spectral radius of A.

Theorem 2.1. Assume that Assumptions A1–A4 hold and p ∈ (0, 1]k. If r(Sp

Λ(0)) ≤ 1, then

lim
n→∞

Fn(x) = 0

for all x ≥ 0. Alternatively, if r(SpΛ(0)) > 1, then there exists a fixed point x̂ � 0
for F such that

lim
n→∞

Fn(x) = x̂

for all x > 0.
Proof. Let A(x) = SpΛ(x). Assumptions A1, A4, and p � 0 imply that A(x) is

primitive for all x ≥ 0. Assumption A3 implies that F (x) ≥ F (y) (resp., F (x) > F (y),
F (x) � F (y)) whenever x ≥ y (resp., x > y, x � y). In other words, F is a strongly
monotone map.
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EVOLUTION OF DISPERSAL 1369

Suppose that r(A(0)) ≤ 1. Let wT � 0 be a left Perron vector of A(0), i.e.,
r(A(0))wT = wTA(0). Define the function L : Rk

+ → R+ by L(x) = wTx. For x > 0,
Assumption A1 implies that wTA(0) � wTA(x). Hence, for any x > 0,

L(F (x)) = wTA(F (x))x

= wTA(0)x + wT (A(F (x)) −A(0))x

< r(A(0))wTx ≤ L(x).

Since L is strictly decreasing along nonzero orbits of F , L(0) = 0, and L(x) > 0 for
x > 0, it follows that limn→∞ Fn(x) = 0 for all x ≥ 0.

Suppose r(A(0)) > 1. First, we show that there exists a positive fixed point x̂.
Let v � 0 be a right Perron eigenvector for A(0), i.e., A(0)v = r(A(0))v. Since
A(0)v � v, continuity of A(x) implies that there exists ε > 0 such that A(y)y � y,
where y = εv. Since F (x) � F (y) whenever x � y, induction implies y 	 F (y) 	
F 2(y) 	 F 3(y) 	 · · · . Assumption A2 implies that the increasing sequence Fn(y) is
bounded. Hence, there exists x̂ such that limn→∞ Fn(y) = x̂. Continuity of F implies
that F (x̂) = x̂. Second, we show that limn→∞ Fn(x) = x̂ whenever x̂ > x > 0. In
particular, x̂ is a unique positive fixed point. Let wT be the left Perron eigenvector
of A(x̂) that satisfies wT x̂ = 1. Since x̂ is a positive fixed point, r(A(x̂)) = 1. Define
L : Rk

+ → R+ by L(x) = wTx. Let x̂ > x > 0. Then x̂ > F (x) > 0 and

L(F (x)) = wTA(F (x))x

= wTA(x̂)x + wT (A(F (x)) −A(x̂))x

> r(A(x̂))wTx = L(x).

Hence, L(x), L(F (x)), L(F 2(x)), . . . is a positive increasing sequence bounded above
by L(x̂) = 1. Since L(x) < 1 for all x < x̂, it follows that limn→∞ Fn(x) = x̂
for all 0 < x < x̂. Third, it can be shown similarly that limn→∞ Fn(x) = x̂ for
all x > x̂. Fourth, consider any x � 0. Choose x > x such that x > x̂ and
choose x < x such that 0 < x < x̂. Since Fn(x) < Fn(x) < Fn(x) for all n and
limn→∞ Fn(x) = limn→∞ Fn(x) = x̂, continuity of F implies that limn→∞ Fn(x) = x̂.
Finally, consider any x > 0. Assumptions A3–A4 imply that there exists n ≥ 1 such
that Fn(x) � 0. Hence, limn→∞ Fn(x) = x̂.

To understand the evolution of dispersal, we shall consider two populations that
differ only in their dispersal ability. Let x, y ∈ Rk

+ denote the vector of densities of
the two populations and p, p̃ denote their dispersal strategies. Since the populations
differ only in their dispersal abilities, their dynamics are given by

x′ = SpΛ(x + y)x =: G1(x, y),(2)

y′ = Sp̃Λ(x + y)y =: G2(x, y).

From Assumption A2 it follows that (2) is dissipative i.e., there exists a compact set
K such that for any (x, y) ≥ (0, 0), Gn(x, y) ∈ K for n sufficiently large. Regarding
the dynamics of (2) near equilibria, we need the following result about invasiveness.
Since we have not assumed that G(x, y) is continuously differentiable, this result does
not follow immediately from the standard unstable manifold theory.
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1370 S. KIRKLAND, C.-K. LI, AND S. J. SCHREIBER

Proposition 2.2. Assume that p, p̃ ∈ (0, 1]k, S and Λ satisfy Assumptions A1–
A4, and r(SpΛ(0)) > 1. Let x̂ � 0 be the fixed point satisfying G1(x̂, 0) = (x̂, 0). If
r(Sp̃Λ(x̂)) > 1, then there exists a neighborhood U ⊂ Rk

+ ×Rk
+ of (x̂, 0) such that for

any (x, y) ∈ U with y > 0, Gn(x, y) /∈ U for some n ≥ 1.

Proof. Let A(x) = Sp̃Λ(x). Assume that r(A(x̂)) > 1. Let wT � 0 be a left
Perron eigenvector of A(x̂). Since wTA(x̂) � wT , continuity of x �→ A(x) implies
that there exists a compact neighborhood U ⊂ Rk

+×Rk
+ of (x̂, 0) and c > 1 such that

wTA(x + y) � cwT for all (x, y) ∈ U . Define L : Rk
+ ×Rk

+ → R+ by L(x, y) = wT y.
Let (x, y) be in U with y > 0. We have L(G(x, y)) = wTAp̃(x + y)y > cL(x, y).
Hence, if (x, y), . . . , Gn(x, y) ∈ U , then L(Gn(x, y)) > cnwT y. Since U is compact
and y > 0, it follows that there exists n ≥ 1 such that Gn(x, y) /∈ U .

3. The slower unconditional disperser wins. In this section, we consider
only an unconditional dispersal strategy p: a strategy that satisfies p1 = · · · = pk for
some common value d. Equivalently, p = d1, where 1 = (1, . . . , 1). Our key result is
the following theorem concerning the monotonicity of the dominant eigenvalue with
respect to the parameter d.

Theorem 3.1. Let S be an irreducible column substochastic matrix and Λ be
a diagonal matrix. If Λ is not a scalar matrix, then d �→ r(((1 − d)I + dS)Λ) is
decreasing on [0, 1].

The proof of Theorem 3.1 is given in section 4, where we also characterize the
function d �→ r(Sd1) when S is reducible. The following corollary follows immediately
from Theorems 2.1 and 3.1.

Corollary 3.2. Assume that F , S, and Λ(x) satisfy Assumptions A1–A4 and
p = d1. Then there exists d∗ ≥ 0 such that we have the following.

Persistence: If d ∈ [0, d∗), then there exists x̂ � 0 satisfying limn→∞ Fn(x) = x̂
for all x � 0.

Extinction: If d ∈ [d∗, 1], then limn→∞ Fn(x) = 0 for all x ≥ 0.

Moreover, d∗ = 0 if maxi λi(0) ≤ 1, d∗ ∈ (0, 1) if maxi λi(0) > 1 and r(SΛ(0)) < 1,
and d∗ ≥ 1 if r(SΛ(0)) ≥ 1.

Corollary 3.2 implies that whenever r(SΛ(0)) < 1, unconditional dispersers have
a critical dispersal rate below which the population persists and above which the
population is deterministically driven to extinction.

To characterize the dynamics of competing unconditional dispersers, we need an
additional assumption on (2) to avoid degenerate cases. Let v � 0 be a right Perron
eigenvector of S, i.e., Sv = r(S)v. We make the following assumption.

A5: Λ(tv) is not a scalar matrix for any t ≥ 0.

This assumption assures that the model exhibits a minimal amount of spatial hetero-
geneity in the per-capita growth rates at fixed points.

Theorem 3.3. Let G = (G1, G2) satisfy Assumptions A1–A5. Assume that

p = d1, and p̃ = d̃1, where 0 < d < d̃ ≤ 1. If r(SpΛ(0)) > 1, then for all x > 0 and
y ≥ 0,

lim
n→∞

Gn(x, y) = (x̂, 0),

where x̂ is the positive fixed point of x �→ G1(x, 0).

Theorem 3.3 implies that the slower disperser always displaces the faster disperser.
This occurs despite the fact that the faster disperser is initially able to establish itself
more rapidly, as illustrated in Figures 1 and 2.
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EVOLUTION OF DISPERSAL 1371
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Fig. 1. A simulation of (2) with k = 50 × 50 (i.e., a two-dimensional spatial grid), λi(xi) =
ai

1+xi
with ai randomly chosen from [1, 2], d = 0.2, d̃ = 0.3, and S given by movement with equal

likelihood to east, west, north, and south, and periodic boundary conditions. The initial condition
corresponds to a density one of both populations in the center patch. The dotted and solid curves
correspond to the abundances of the slower and faster dispersing populations, respectively.
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(a) slower disperser at generation 100 (b) faster disperser at generation 100
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(c) slower disperser at generation 500 (d) faster disperser at generation 500

Fig. 2. Spatial distributions of the slower disperser in (a) and (c) and the faster dispersers
in (b) and (d). The model and parameters are as in Figure 1. Darker (resp., lighter) shading
correspond to lower (resp., higher) densities.
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1372 S. KIRKLAND, C.-K. LI, AND S. J. SCHREIBER

Proof. The proof of this theorem relies on a result of Hsu, Smith, and Waltman [11,
Theorem A] and Theorems 2.1 and 3.1. Let Ad(x) = Sd1(x). We start the proof with
an important implication of Assumption A5. Suppose (x, y) satisfies G(x, y) = (x, y).
We claim that Λ(x + y) is not a scalar matrix. Indeed, suppose to the contrary that
Λ(x + y) = tI for some t > 0. Then

x = SpΛ(x + y)x = (1 − d)tx + dtSx,

y = Sp̃Λ(x + y)y = (1 − d̃)ty + d̃tSy.

Consequently, x and y (and hence x+ y) are scalar multiples of v. Since this con-
tradicts Assumption A5, Λ(x + y) is not a scalar matrix for any fixed point (x, y)
of G.

Assuming that r(Ad(0)) > 1, Theorem 2.1 implies that x �→ G1(x, 0) has a
unique positive fixed point x̂ that is globally stable. We prove the theorem in two
cases. In the first case, assume that r(Ad̃ (0)) > 1. Theorem 2.1 implies that there
is a unique ŷ � 0 such that G(0, ŷ) = (0, ŷ) and limn→∞ Gn(0, y) = (0, ŷ) whenever
y � 0. To employ Theorem A in [11] we need to verify two things: G has no positive
fixed point and (0, ŷ) is unstable. First, suppose to the contrary there exists x � 0
and y � 0 such that G(x, y) = (x, y). Then x = Ad(x + y)x, y = Ad̃ (x + y)y,
and r(Ad(x + y)) = 1. Since Λ(x + y) is not a scalar matrix, Theorem 3.1 implies
that 1 = r(Ad(x + y)) > r(Ad̃ (x + y)) = 1. Hence, there can be no positive fixed
point. Second, to show that (0, ŷ) is unstable, we use Theorem 3.1, which implies
that 1 = r(Ad̃ (ŷ)) < r(Ap(ŷ)), and apply Proposition 2.2. Applying Theorem A of
[11] implies that limn→∞ Gn(x, y) = (x̂, 0) whenever x � 0 and y � 0.

Suppose that r(Ad̃ (0)) ≤ 1. Let wT � 0 be a left Perron vector of Ad̃ (0).
Define the function L : Rk

+ → R+ by L(y) = wT y. Let π(x, y) = y. Since
L(Gn(x, y)) is strictly decreasing whenever y > 0, L(0) = 0, and L(y) > 0 for
y > 0, it follows that limn→∞ π(Gn(x, y)) = 0 for all x ≥ 0. Hence, for any
(x, y) ∈ Rk

+×Rk
+, the limit points of Gn(x, y) as n → ∞ lie in Rk

+×{0}. By Theorem
1.8 in [18], the closure of these limit points form a connected chain recurrent set (see
[18] for the definition). Since the only connected chain recurrent sets in Rk

+ ×{0} are
(0, 0) and (x̂, 0), instability of (0, 0) implies that limn→∞ Gn(x, y) = (x̂, 0) whenever
x > 0.

4. Proof of Theorem 3.1. We begin with the following preliminary result.
Lemma 4.1. Let v and wT be positive k-vectors so that wT v = 1. Let P be

the polytope of nonnegative matrices A such that wTA = wT and Av = v. For each
A ∈ P, let DA denote the diagonal matrix of column sums of A. Then

min {wTDAv|A ∈ P} = 1.

A matrix A ∈ P attains the minimum value for wTDAv if and only if DA = I.
Proof. Without loss of generality, assume that wT = (w1, . . . , wk) is such that

w1 ≤ · · · ≤ wk. Note also that if all of the entries in wT are equal, then each matrix in
P is a column stochastic matrix, and the statement of the lemma follows immediately.
We suppose henceforth that wT has at least two distinct entries.

Suppose that A ∈ P and that there are indices i, j, p, q satisfying the following
conditions:

wi < wj , wp < wq, and aip, ajq > 0.(3)
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EVOLUTION OF DISPERSAL 1373

We claim that in this case, the matrix A does not satisfy

wTDAv ≤ wTDBv for all B ∈ P.(4)

To see the claim, note that from (3), it follows that for sufficiently small ε > 0, the
matrix

Â = A + ε(−ei/wi + ej/wj)(ep/vp − eq/vq)
T

is nonnegative, and satisfies wT Â = wT and Âv = v, so that Â ∈ P. Further,

DÂ = DA + ε
wj − wi

wiwj
diag

(
−ep
vp

+
eq
vq

)
,

so that

wTDÂv = wTDAv − ε
(wj − wi)(wp − wq)

wiwj
< wTDAv.

Thus wTDAv does not yield the minimum, as claimed.
Suppose the minimum entry in w is repeated a times, i.e., w1 = · · · = wa < wa+1.

Partition out the first a entries of wT , to write wT as [w11
T |w̃T ], and partition v

conformally as

v =

[
v̂
ṽ

]
.

Let A ∈ P satisfy (4). Suppose first that there are indices i and p with 1 ≤ i ≤ a and
a + 1 ≤ p, such that aip > 0. Since A is a minimizer, we see from the claim above
that for any indices j, q with j ≥ a + 1 and 1 ≤ q ≤ a, we must have ajq = 0. But
then A has the form

A =

[
A1 X
0 A2

]
,

where A1 is a × a. From the facts that wTA = wT and that the first a entries
of wT are equal and the partitioned form for A, we find that 1TA1 = 1T . Also,
A1v̂ + Xṽ = v̂, so that 1T (A1v̂ + Xṽ) = 1T v̂. Since 1TA1 = 1T , we conclude that
X = 0, a contradiction.

Consequently, we conclude that for any indices i and p with 1 ≤ i ≤ a and
a + 1 ≤ p, we must have aip = 0. Thus we see that A has the form

A =

[
A1 0
Y A2

]
,

where A1 is a × a and A1v̂ = v̂. Using the fact that wTA = wT , we thus find that
w11

TA1 + w̃TY = w11
T . Hence we have w11

TA1v̂ + w̃TY v̂ = w11
T v̂, from which we

deduce that Y = 0.
We conclude that if A ∈ P satisfies (4), then A can be written as[

A1 0
0 A2

]
,
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1374 S. KIRKLAND, C.-K. LI, AND S. J. SCHREIBER

where A1 is column stochastic. The lemma is now readily established by a deflation
argument.

Our next result lends some insight into the irreducible case.
Lemma 4.2. Suppose that A is an irreducible nonnegative matrix, and let DA

be the diagonal matrix of column sums of A. Let Λ be a diagonal matrix such that
Λ ≥ DA. For each d ∈ [0, 1] let h(d) = r((1 − d)Λ + dA). Then for any d ∈
(0, 1), h′(d) ≤ 0, with equality holding if and only if Λ = DA = aI for some a > 0. In
that case, h(d) = r(A) = a for each d ∈ [0, 1].

Proof. Throughout, we suppose without loss of generality that r(A) = 1.
First, suppose that A is a primitive matrix; we claim that in this case, h′(1) ≤ 0

with equality holding if and only if Λ = DA = I. Let v be a right Perron vector
for A. Since A is primitive, its spectral radius is a simple eigenvalue that strictly
dominates the modulus of any other eigenvalue; it follows that in a sufficiently small
neighborhood of 1, h(d) is an eigenvalue of (1− d)Λ + dA that is differentiable in d.
For d in such a neighborhood of 1, let w(d)T be a left h(d)-eigenvector of (1−d)Λ + dA,
normalized so that w(d)T v = 1. Since Av = v, we have

h(d) = w(d)T ((1 − d)Λ + dA)v

= (d− 1)(w(d)T (A− Λ)v) + w(d)TAv

= (d− 1)(1 − w(d)TΛv) + 1.

Since limd→1 w(d)T = wT , it follows that

lim
d→1

h(d) − h(1)

d− 1
= lim

d→1
(1 − w(d)TΛv) = 1 − wTΛv

= −(wTDAv − 1) − (wT (Λ −DA)v).

Since Λ ≥ DA, we have wT (Λ−DA)v ≥ 0, and by Lemma 4.1, we have wTDAv−1 ≥ 0,
so certainly h′(1) ≤ 0. Further, we see that h′(1) = 0 if and only if wTDAv = 1 and
wT (Λ −DA)v = 0. It now follows from Lemma 4.1 that the former holds if and only
if DA = I, and since wT and v are positive vectors, we see that the latter holds if and
only if Λ = DA. This completes the proof of the claim.

Next, suppose that A is an irreducible nonnegative matrix, and fix d ∈ (0, 1).
Observe that the matrix B = (1 − d)Λ + dA is primitive and that Λ ≥ DB . For each
c ∈ [0, 1], let k(c) = r((1− c)Λ+ cB), and note that k(c) = h(cd). Applying the claim
above to the function k, we see that k′(1) ≤ 0, with equality holding if and only if
Λ = DB = I. But from the chain rule, we find that k′(1) = dh′(d), so that h′(d) ≤ 0,
with equality if and only if Λ = DB = I. That last condition is readily seen to be
equivalent to Λ = DA = I.

Finally, we note that if Λ = DA = I, it is straightforward to see that for each
d ∈ [0, 1], the matrix (1− d)Λ + dA is column stochastic, so that h(d) = 1 = r(A) for
all such d.

The following, which evidently yields Theorem 3.1 immediately, follows from
Lemma 4.2.

Corollary 4.3. Suppose that A is an irreducible nonnegative matrix, and let
DA be the diagonal matrix of column sums of A. Let Λ be a diagonal matrix such that
Λ ≥ DA. For each d ∈ [0, 1] let h(d) = r((1 − d)Λ + dA). Then either

(a) h(d) is a strictly decreasing function of d ∈ [0, 1] or
(b) for some a > 0,Λ = DA = aI and h(d) = a for each d ∈ [0, 1].
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EVOLUTION OF DISPERSAL 1375

We have the following generalization of Corollary 4.3.
Theorem 4.4. Let S be a column substochastic matrix and Λ be a diagonal

matrix with positive diagonal entries. Define the function f(d) = r(((1− d)I + dS)Λ)

for d ∈ [0, 1]. Then there is a d̂ ∈ [0, 1] such that f is strictly decreasing on [0, d̂] and

f is constant on [d̂, 1]. Specifically, let P be a permutation matrix such that

PTSP =

⎡
⎢⎢⎢⎢⎢⎣

S1 0 . . . 0 X1

0 S2 . . . 0 X2

...
. . .

...
...

0 . . . 0 Sk Xk

0 0 . . . 0 Sk+1

⎤
⎥⎥⎥⎥⎥⎦, and PTΛP =

⎡
⎢⎢⎢⎣

Λ1

Λ2

. . .

Λk+1

⎤
⎥⎥⎥⎦,

where (i) PTSP and PTΛP are partitioned conformally, (ii) for each i = 1, . . . , k, Si

is an irreducible column stochastic matrix, and (iii) Sk+1 is a column substochastic
matrix such that r(Sk+1) < 1. (Note that such a permutation matrix P exists and
that one part of this partitioning of PTSP may be vacuous.) Let r(Λ) = ρ. Exactly
one of the following cases holds.

(a) For some i = 1, . . . , k,Λi = ρI. In this case, f(d) = ρ for all d ∈ [0, 1].
(b) There is an index i0 = 1, . . . , k and an a < ρ such that Λi0 = aI and in

addition, for each j = 1, . . . , k + 1, we have that either r(SjΛj) < a or

r(((1 − d)I + dSj)Λj) = a for all d ∈ [0, 1]. In this case, there is a d̂ ∈ (0, 1)

such that f(d) is a strictly decreasing function of d for d ∈ [0, d̂ ], while for

each d ∈ [d̂, 1], f(d) = a.
(c) If Λi �= ρI for i = 1, . . . , k and there is no index i0 and value a satisfying the

hypotheses of (b), then f(d) is strictly decreasing for d ∈ [0, 1].
Proof. Throughout, we assume without loss of generality that ρ = 1. First, note

that f(d) = max {r(((1−d)I +dSi)Λi) : i = 1, . . . , k+1}. Further, since r(Sk+1) < 1
it follows that no principal submatrix of Sk+1 (including the entire matrix Sk+1 itself)
can have all of its column sums equal to 1; we then deduce from Corollary 4.3 that
r(((1−d)I +Sk+1)Λk+1) is strictly decreasing as a function of d ∈ [0, 1]. Note further
that if none of Λ1, . . . ,Λk is a scalar matrix, then for each i = 1, . . . , k the function
r(((1 − d)I + dSi)Λi) is strictly decreasing in d, from which we conclude that f(d) is
strictly decreasing.

Suppose next that for some i = 1, . . . , k, we have Λi = I. From Corollary 4.3
we see that r(((1 − d)I + dSi)Λi) = 1 for all d ∈ [0, 1], and we conclude readily that
f(d) = 1 for all d ∈ [0, 1].

It remains only to consider the case that Λi �= I for i = 1, . . . , k but that for one
or more indices i = 1, . . . , k, Λi is a scalar matrix. For concreteness, we suppose that
Λi = aiI for i = 1, . . . , j and that for i = j + 1, . . . , k, Λi is not a multiple of the
identity matrix. Again without loss of generality, we can assume that 1 > a1 ≥ · · · ≥
aj . In this situation, we find that for each i = 1, . . . , j, r(((1−d)I+dSi)Λi) = ai, while
for each i = j + 1, . . . , k + 1, r(((1 − d)I + dSi)Λi) is a strictly decreasing function
of d. It follows from the above considerations that f(d) = max {a1, r(((1 − d)I +
dSj+1)Λj+1), . . . , r(((1 − d)I + dSk+1)Λk+1)}.

Evidently two cases arise: either max {r(Sj+1Λj+1), . . . , r(Sk+1Λk+1)} ≥ a1 or
max {r(Sj+1Λj+1), . . . , r(Sk+1Λk+1)} < a1. In the former case we see that in fact
f(d) = max {r(((1−d)I+dSj+1)Λj+1), . . . , r(((1−d)I+dSk+1)Λk+1)} for all d ∈ [0, 1],
from which we conclude that f is strictly decreasing in d. Now suppose that the latter
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1376 S. KIRKLAND, C.-K. LI, AND S. J. SCHREIBER

case holds. Since a1 < 1, we see that when d is near to 0, f(d) = max {r(((1 − d)I +
dSj+1)Λj+1), . . . , r(((1 − d)I + dSk+1)Λk+1)} > a1. Thus, from the intermediate

value theorem it follows that there is a value d̂ ∈ (0, 1) such that max {r(((1 − d)I +

dSj+1)Λj+1), . . . , r(((1 − d)I + dSk+1)Λk+1)} ≥ a1 for d ∈ [0, d̂] and max {r(((1 −
d)I + dSj+1)Λj+1), . . . , r(((1− d)I + dSk+1)Λk+1)} < a1 for d ∈ [d̂, 1]. It now follows

that f(d) is strictly decreasing for d ∈ [0, d̂] and f(d) = a1 for d ∈ [d̂, 1].

5. Competing conditional dispersers. In this section, we extend our study
to conditional dispersers in which p need not be a constant vector. The following
theorem coupled with Proposition 2.2 indicates which dispersal strategies are subject
to invasion by other dispersal strategies.

Theorem 5.1. Assume that Λ(x) and S satisfy Assumptions A1–A4, p ∈ (0, 1]k,
and r(SpΛ(0)) > 1. Let x̂ � 0 be the unique positive fixed point of F , and let v � 0
be a right Perron vector for S. Then r(Sp̃Λ(x̂)) ≤ 1 for all p̃ ∈ (0, 1]k if and only if
λi(0) > 1 for all i, S is column stochastic, and

p = t
(
Λ−1(I)

)−1
v(5)

for some t ∈ (0, 1/max{Λ−1(I)−1v}]. Moreover, if p is given by (5), then Λ(x̂) = I.

In our proof of Theorem 5.1, we show that if either S is strictly substochastic or
p is not given by (5), then there are strategies p̃ arbitrarily close to p that can invade,
i.e., r(Sp̃Λ(x̂)) > 1. When S is stochastic and p is given by (5), we also show that
Λ(x̂) = I and, consequently, r(Sd̃Λ(x̂)) = 1 for all p̃ ∈ [0, 1]k. The populations playing
one of these strategies exhibit an ideal-free distribution at equilibrium [3]; i.e., the per-
capita fitness in all occupied patches are equal. Theorem 5.1 suggests the possibility
that strategies of the form (5) can displace all other strategies. By [11, Theorem A] a
sufficient condition for this displacement is verifying that (5) can invade any strategy

p̃ not given by (5) and cannot coexist at equilibrium with strategy d̃. This turns out
not to be true in general. For example, let λi(xi) with i = 1, 2 be functions such that
λ1(1.2) = λ2(1) = 1, λ1(1.19) = 20

9+
√

41
≈ 1.29844, λ2(9.52/(3 +

√
41)) = 10

9+
√

41
≈

0.642919, where 9.52/(3 +
√

41) ≈ 1.01234, and Assumptions A1–A3 are satisfied.
Define

S =

(
0.5 0.6
0.5 0.4

)
,

which has right Perron vector

v =

(
1

5/6

)
.

Then p = 1 is a strategy of the form (5). Define

p̃ =

(
0.8
2/3

)
.

The unique positive fixed point of y �→ Sp̃Λ(y)y = G(0, y) is by construction given by

ŷ =

(
1.19
9.52

3+
√

41

)
.
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EVOLUTION OF DISPERSAL 1377

Since a computation reveals that

r(SΛ(ŷ)) = 0.993735 . . . < 1 = r(Sd̃Λ(ŷ)),

the strategy p = 1 cannot invade and displace the strategy p̃. Hence, for a gen-
eral Λ(x), we cannot expect that strategies of the form (5) will displace all other
strategies. However, extensive simulations with the Beverton–Holt growth functions
(i.e., λi(xi) = ai

1+bixi
) suggest that the strategies given by (5) can displace any other

strategy (see Figure 3). Thus we make the following conjecture.
Conjecture 5.1. If λi(xi) = ai

1+bixi
, S is primitive and column stochastic, p is

given by (5), p̃ is not given by (5), and r(SpΛ(0)) > 1, then

lim
n→∞

Gn(x, y) = (x̂, 0)

whenever x > 0.
Proof of Theorem 5.1 The key proposition (which gives us more than we need) is

the following.
Proposition 5.2. Suppose that A is an irreducible nonnegative matrix with

column sums ci such that c1 = mini ci < maxi ci = ck. If Ã is a nonnegative matrix
obtained from A by changing its first column from⎛

⎜⎜⎜⎝
a11

·
...

ak1

⎞
⎟⎟⎟⎠ to

⎛
⎜⎜⎜⎝
a11

·
...

ak1

⎞
⎟⎟⎟⎠ + γ

⎛
⎜⎜⎝
−
∑k

i=2 ai1
a21

. . .
ak1

⎞
⎟⎟⎠

for some positive γ > 0, then r(A) < r(Ã). Alternatively, if Â is a nonnegative matrix
obtained from A by changing its last column from⎛

⎜⎜⎜⎝
a1k

·
...

akk

⎞
⎟⎟⎟⎠ to

⎛
⎜⎜⎜⎝
a1k

·
...

akk

⎞
⎟⎟⎟⎠− γ

⎛
⎜⎜⎝
−
∑k

i=2 aik
a2k

. . .
akk

⎞
⎟⎟⎠

for some γ ∈ (0, 1], then r(A) > r(Â).
Proof. Note that ck > r(A) > c1. Let wT be the left Perron vector for A such

that w1 = 1, and let ṽ be the right Perron vector for Ã normalized so that wT ṽ = 1.
Observe that for any γ such that Ã is nonnegative, Ã is irreducible and, consequently,
v is a positive vector. Set W = diag (w1, . . . , wn). Then WAW−1 has all the column
sums equal to r(A). Consider the first column of WAW−1. We see that

a11 +

k∑
i=2

wiai1 = r(A) > c1 =

k∑
i=1

ai1.

Thus,

k∑
i=2

wiai1 >

k∑
i=2

ai1.

It follows that r(Ã) = wT Ãṽ = wTAṽ + γṽ1(−
∑k

i=2 ai1 +
∑k

i=2 wiai1) > wTAṽ =
r(A).
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Fig. 3. One hundred realizations of an ideal-free disperser competing against a random dispersal
strategy. In the simulations, k = 10 and λi(xi) = ai

1+bixi
. For each simulation, the values of ai

are randomly selected from the interval [1, 2], p is defined by (5), where t is randomly selected from

the interval [0,max
(
Λ−1(I)

)−1
v], and p̃ is randomly selected from [0, 1]10. To normalize the local

population abundances to a value of 1, in each simulation bi is set equal to 1
ai−1

.

A similar argument applies to the matrix Â when γ < 1, while if γ = 1, we see
that the first column of Â is ckek and r(Â) ≥ ck > r(A).

Now assume p ∈ (0, 1]k, r(SpΛ(0)) > 1, x̂ � 0 is the unique positive fixed point
of F , and v � 0 is a right Perron vector for S. Let A = SpΛ(x̂). We begin by showing
that r(Sp̃Λ(x̂)) ≤ 1 for all p̃ ∈ [0, 1]k implies that S is stochastic and p is given by (5).
First, we show that A must have constant column sums ci. Suppose to the contrary
that there exists 1 ≤ j ≤ k such that cj = maxi ci > mini ci. Let p̃ be any strategy
where p̃i = pi for i �= j and p̃j ∈ (0, pj). Then Sp̃Λ(x̂) is given by replacing the jth
column of A by a column which is

≥

⎛
⎜⎜⎜⎝
a1j

·
...

akj

⎞
⎟⎟⎟⎠− γ

⎛
⎜⎜⎝
−
∑k

i=2 aij
a2j

. . .
akj

⎞
⎟⎟⎠,

where γ = 1 − p̃j

pj
> 0. Proposition 5.2 implies that r(Sp̃Λ(x̂)) > r(A) = 1, contrary

to our assumption about p. Therefore A must have constant column sums c = c1 =
· · · = ck. Second, suppose to the contrary that S is substochastic. Let p̃ be any
strategy where p̃i ∈ (0, pi). Since S is substochastic, every column sum Sp̃Λ(x̂) is
greater than or equal to c and at least one column sum is strictly greater than c.
Hence, r(Sp̃Λ(x̂)) > r(A) = 1, contrary to our assumption about p. Therefore, S is
stochastic. Finally, since S is stochastic, it follows that c = 1 and Λ(x̂) = I. Since
x̂ � 0, we have λi(0) > 1 and x̂i = λ−1

i (1) for all i. Since x̂ is a fixed point, we get
that x̂ = (I − diag (p) + S diag (p))x̂. Equivalently, S diag (p)x̂ = diag (p)x̂. Hence,
diag (p)x̂ � 0 is a right Perron vector for S and p is given by (5).

Now suppose that S is stochastic and p is given by (5). Then Λ(x̂) = I and
r(Sp̃Λ(x̂)) = r(Sp̃) = 1 for all p̃ ∈ [0, 1]k.

Conjecture 5.1 suggests that for populations with Beverton–Holt local dynamics,
the evolution of conditional dispersers will favor strategies on the ray defined by (5).
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EVOLUTION OF DISPERSAL 1379

Hence, it is natural to ask what happens when two strategies on this ray compete
against one another.

Proposition 5.3. Assume that Λ(x) and S satisfy Assumptions A1–A4, λi(0) >
1 for all i, and S is stochastic. Let p and p̃ be strategies given by (5) with t = d and

t = d̃, where 0 < d < d̃ ≤ 1/max {
(
Λ−1(I)

)−1
v}. Then the set of fixed points of G

are (0, 0) and

L = {(αx̂, (1 − α)x̂ : α ∈ [0, 1]},

where x̂ = Λ−1(I)1. Moreover, if Λ(x) is continuously differentiable with λ′
i(xi) < 0

for all i, and d
dxi

xiλi(xi) > 0 for all i, then there exists a neighborhood U ⊂ Rk
+×Rk

+

of L and a homeomorphism h : [0, 1] ×D → U with D = {z ∈ R2k−1 : ‖z‖ < 1} such
that h(α, 0) = αx̂ + (1 − α)x̂, h(0, D) = {(0, y) ∈ U}, h(1, D) = {(x, 0) ∈ U}, and
limn→∞ Gn(x, y) = (αx̂, (1 − α)x̂) for all (x, y) ∈ h({α} ×D).

Proof. By the change of variables x �→ Λ−1(I)−1diag (v)x, we can assume without

any loss of generality that p = d1 and p̃ = d̃1. Thus, a point (x, y) > 0 is a fixed
point of G if and only if

((1 − d)I + dS)Λ(x + y)x = x,

((1 − d̃)I + d̃S)Λ(x + y)y = y.

Since r(((1− d)I + dS)Λ(x+ y))) = r((1− d̃ )I + d̃S)Λ(x+ y)) = 1 and d �= d̃, Theo-
rem 3.1 implies that Λ(x+ y) = I. Therefore, (x, y) needs to satisfy x+ y = Λ−1(I)1,

Sdx = dx, and Sd̃y = d̃y. Since S is primitive, we get that x must be a scalar multiple
of y. Hence, the fixed points of G are given by (0, 0) and L.

Now assume that x �→ Λ(x) is continuously differentiable, λ′
i(x) < 0 for all i, and

d
dxi

xiλi(xi) > 0 for all i. We will show that L is a normally hyperbolic attractor in
the sense of Hirsch, Pugh, and Shub [7]. Let (x, y) ∈ L. We have

DG(x, y) =

(
Sd(Λ

′(x + y)diag (x) + Λ(x + y)) SdΛ
′(x + y)diag (x)

SdΛ
′(x + y)diag (y) Sd(Λ

′(x + y)diag (y) + Λ(x + y))

)
.

Since 0 < λ′
i(xi + yi)(xi + yi) + λi(xi + yi) < λ′

i(xi + yi)xi + λi(xi + yi) for all i, the
diagonal blocks, Sd(Λ

′(x+y)diag (x)+Λ(x+y)) and Sd(Λ
′(x+y)diag (y)+Λ(x+y))

of DG(x, y), are nonnegative primitive matrices. Since λ′
i(xi+yi) < 0 for all i, the off-

diagonal blocks, SdΛ
′(x+y)diag (x) and SdΛ

′(x+y)diag (y), of DG(x, y) are negative
scalar multiples of primitive matrices. Hence, DG(x, y) is a primitive matrix with
respect to the competitive ordering on Rk

+ × Rk
+; i.e., (x̃, ỹ) ≥K (x, y) if x̃ ≥ x and

ỹ ≤ y. Since L is a line of fixed points, DG(x, y) has an eigenvalue of one associated
with the eigenvector (Λ−1(I)1,−Λ−1(I)1). The Perron–Frobenius theorem implies
that all the other eigenvalues of DG(x, y) are strictly less than one in absolute value.
Hence, L is a normally hyperbolic one-dimensional attractor. Theorem 4.1 of [7]
implies that there is a neighborhood U ⊂ Rk

+ × Rk
+ of L and a homeomorphism

h : [0, 1]×D → U with D = {z ∈ R2k−1 : ‖z‖ < 1} such that h(α, 0) = αx̂+(1−α)x̂,
h(0, D) = {(0, y) ∈ U}, h(1, D) = {(x, 0) ∈ U}, and limn→∞ Gn(x, y) = (αx̂, (1−α)x̂)
for all (x, y) ∈ h({α} ×D).

Proposition 5.3 implies that once a “resident” population playing a strategy of
the form (5) has established itself, a “mutant” strategy of the form (5) can invade
only in a weak sense: if the mutants enter at low density, deterministically they will
converge to an equilibrium with a low mutant density. After the invasion, one would
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expect that demographic or environmental stochasticity would with greater likelihood
result in the displacement of the mutants. Hence, once a strategy of the form (5) has
established itself, it is likely to resist invasion attempts from other strategies of the
form (5). Proposition 5.3 also suggests the following conjecture, which is supported
by simulations using the Beverton–Holt growth function.

Conjecture 5.2. Under the conditions of Proposition 5.3, for every (x, y) > 0
there exists α ∈ [0, 1] such that

lim
n→∞

Gn(x, y) = (αΛ−1(I)1, (1 − α)Λ−1(I)1).

6. Discussion. For organisms that disperse unconditionally, we proved that a
slower dispersing population competitively excludes a faster dispersing population.
Similar results have been proven for reaction diffusion equations where the disper-
sal kernel is self-adjoint [2], observed in a partial analysis of two patch differential
equations [8] and illustrated with simulations of two patch difference equations [17].
Our proofs apply to difference equations with an arbitrary number of patches and
without any symmetry assumptions about the dispersal matrix S. Since geographical
and ecological barriers often create asymmetries in the movement patterns of active
dispersers and create asymmetries in abiotic and biotic currents that carry passive
dispersers, accounting for these asymmetries is crucial and results in a significantly
more difficult mathematical problem than the symmetric case. Theorem 3.1 provides
the solution to this problem by proving for any given environmental condition (i.e.,
the choice of Λ and S), the principal eigenvalue for the growth dispersal matrix is a
decreasing function of the dispersal rate. Hence, under all environmental conditions,
populations that disperse more slowly spectrally dominate populations that disperse
more quickly. Despite this spectral dominance, simulations (e.g., Figure 1) illustrate
that for appropriate initial conditions, faster dispersers can be numerically dominant
as they initially spread across a landscape. This initial phase of numerical dominance
has empirical support in studies of northern range limits of butterflies: dispersal rates
increase as species move north to newly formed favorable habitat [6]. Presumably
over a long period of time, selection will favor slower dispersal rates commensurate
with their ancestral rates of movement (R. Holt, personal communication). However,
since all initial conditions do not lead to an initial phase of numerical dominance for
the faster dispersers (e.g., if the initial condition is a Perron vector for the slower
disperser), we still require a detailed understanding of how the local intrinsic rates of
growth, the dispersal matrix, and initial conditions determine whether the faster or
slower disperser is numerically dominant in the initial phase of establishment.

For conditional dispersers experiencing no dispersal costs (i.e., S is column stochas-
tic and λi(0) > 1 for all i), we provide proofs that generalize previous findings in two
patch models [9, 17]. We prove that all dispersal strategies outside of a one-parameter
family are not evolutionarily stable: when a population adopts one of these strategies,
there are nearby strategies that can invade. For populations playing strategies in this
exceptional one-parameter family, the populations exhibit an ideal-free distribution at
equilibrium: the per-capita growth rate is constant across the landscape [3]. Contrary
to prior expectations [17], we show that are growth functions for which these ideal-free
strategies cannot displace all other strategies. However, numerical simulations with
the biologically plausible Beverton–Holt growth functions suggest that populations
playing these ideal-free strategies can displace populations playing any other strat-
egy. Moreover, when a population at equilibrium plays an ideal-free strategy, we prove
that a population playing another ideal-free strategy cannot increase from being rare
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and, consequently, is likely to be driven to extinction by stochastic forces. For popula-
tions playing these ideal-free strategies, the dispersal likelihood in a patch is inversely
proportional to the equilibrium abundance in a patch. Hence, enriching one patch
may result in the evolution of lower dispersal rates in that patch. Conversely, habitat
degradation of a patch may result in the evolution of higher dispersal rates in that
patch. These predictions about ideal-free strategies, however, have to be viewed with
caution, as they are sensitive to the assumption of no dispersal costs. The inclusion of
the slightest dispersal costs destroys this one-parameter family of evolutionary stable
strategies and leaves only the nondispersal strategy as a candidate for an evolutionary
stable strategy.

Our models make several simplifying assumptions, and relaxing these assumptions
provides several mathematical problems of biological interest. Most importantly, our
models do not include temporal heterogeneity, which is an important ingredient in
the evolution of dispersal [17]. Temporal heterogeneity can be generated exogenously
or endogenously and when combined with spatial heterogeneity can promote the evo-
lution of faster dispersers [10, 13, 17]. For instance, Hutson, Mischaikow, and Poláčik
[13] proved that a faster disperser can displace or coexist with a slower disperser for
periodically forced reaction diffusion equations. Whether similar results can be proven
for periodic or, more generally, random difference equations requires answering math-
ematically challenging questions about spectral properties of periodic and random
products of nonnegative matrices. Similar challenges arise when replacing increasing
growth functions with unimodal growth functions [4, 10, 19] that can generate tem-
poral heterogeneity via periodic and chaotic population dynamics.
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