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Random Perturbations of Dynamical Systems with Absorbing States∗

Frans Jacobs† and Sebastian J. Schreiber‡

Abstract. Let F : M → M be a continuous dissipative map of a separable metric space M . Consider a finite
collection A of closed F -forward invariant sets that is closed under intersection and that contains M .
For all ε > 0, let Xε be a Markov chain for which the elements of A are absorbing (e.g., extinction
boundaries for a population, genotype, or strategy) and such that d(Xε

t+1, F (Xε
t )) ≤ ε for all t.

Under an additional nondegeneracy condition (i.e., the noise extends locally in all nonabsorbing
directions) and a continuity-like condition on the supports of the random perturbations, we show
that for sufficiently small values of ε, Xε asymptotically spends all of its time near certain invariant
sets of F , so-called absorption preserving chain attractors. Moreover, the weak* limit points of Xε’s
stationary distributions as ε → 0 are F -invariant probability measures whose supports lie in the
absorption preserving chain attractors. Applications to the dynamics of structured and unstructured
populations, multispecies interactions, and evolutionary games are given.

Key words. random perturbations of dynamical systems, chain recurrence, absorbing sets, ecological and evo-
lutionary dynamics
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1. Introduction. The evolution of many physical and biological processes is governed by
a mixture of stochastic forces and nonlinear determinism. For example, ecological and evo-
lutionary systems involve nonlinear interactions that are constantly subject to environmental
and demographic fluctuations [1, 17]. When nonlinear determinism dominates, the evolution
of these processes is often described by nonlinear dynamical systems in which the current state
of the system determines all future states [5]. For these deterministic approximations, it is
natural to ask about the correspondence between the behavior of the unperturbed dynamical
system and the same system subject to small random perturbations [13]. This correspondence
was studied initially in 1933 by Pontryagin, Andronov, and Vitt [15], and more recently by
Wentzell and Freidlin [6, 18], Ruelle [16], and Kifer [12]. Each of these studies was primarily
motivated by physical processes in which the random perturbations could act locally in all
directions of the state space. In many biological systems, however, stochastic forces are lim-
ited by biological constraints. These constraints create “absorbing sets” in the state space,
which the system cannot leave after entering. For instance, in a closed ecological community
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294 FRANS JACOBS AND SEBASTIAN J. SCHREIBER

a species that goes extinct remains extinct. It cannot be resurrected by stochastic forces.
Alternatively, in structured community models random perturbations may affect the number
of individuals in each of the classes or stages, but may not change the structural state or
parameters of each of the individuals. Depending on the structure of the model, the collection
of absorbing sets may be large or small. For a semelparous population model with age struc-
ture, a population missing one or more classes always has one or more age classes missing,
a fact that should be respected by random perturbations. For example, the absence of the
reproducing age class in the current generation results in the absence of the youngest age class
in the next generation. On the other hand, for most iteroparous population models the only
absorbing set is extinction [3, 14, 19].

The goal of this article is to investigate random perturbations of dynamical systems with
these types of absorbing sets. To achieve this goal, we introduce in section 2 the notion of
an absorbing π-system, i.e., a collection of closed forward invariant subsets closed under in-
tersection, and random ε-perturbations of deterministic maps that preserve a given absorbing
π-system. These random ε-perturbations act after the deterministic map, preserve the ele-
ments of the absorbing π-system (i.e., once the process enters an absorbing set, it remains in
that absorbing set), and are no larger than ε > 0 in size with respect to a given metric on
the community state space. We illustrate these definitions with ecological models accounting
for demographic, environmental, and immigrational stochasticity, with replicator equations
accounting for demographic, environmental, and mutational stochasticity, and with an age-
structured model. To describe the asymptotic behavior of the randomly perturbed system,
we prove in section 3 the existence of invariant probability measures με whenever the unper-
turbed system has at least one attractor. These invariant probability measures describe the
long-term statistical behavior of trajectories of the randomly perturbed system. As ε ↓ 0, the
work of Khasminskii [11] (see also Kifer [12]) implies that the limit points of these invariant
probability measures are invariant probability measures for the unperturbed system. These
limit points are natural invariant measures for the unperturbed system, as when ε > 0 is suf-
ficiently small the long-term statistical behavior of the perturbed system is well approximated
by these natural invariant measures.

Since the unperturbed system may have several invariant measures, including ones sup-
ported by repellers, sections 4 and 5 determine which invariant sets of the unperturbed system
can actually support the natural invariant measures. In section 4 we introduce the notion of
an absorption preserving chain attractor. This generalizes the notion of extinction preserving
chain attractor as presented in Jacobs and Metz [10], which in turn is a generalization of
the concept of chain attractor as derived by Ruelle [16]. Ruelle introduced chain attractors
to describe the asymptotic behavior of physical systems, in which the dynamics inherently
is influenced by small disturbances. In his construction of chain attractors Ruelle used so-
called pseudo-orbits to model the effect of limited noise on the orbits of an unperturbed system.
In [10] his approach is adapted to unstructured, and in [7] to structured, community-dynamical
models as they are studied in ecology, leading to the notion of extinction preserving chain at-
tractors. The present paper extends these ideas to absorbing π-systems that can account for
a greater variety of stochastic influences as outlined above. In section 5 we prove that under
appropriate assumptions the natural invariant measures are supported by the absorption pre-
serving chain attractors. Moreover, under additional assumptions and ε > 0 sufficiently small,
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RANDOMLY PERTURBED DYNAMICS WITH ABSORBING STATES 295

the randomly ε-perturbed system eventually remains near one of the absorption preserving
chain attractors of the unperturbed system.

To illustrate the utility of the theory, we apply our results in section 6 to models of
competing species and replicator dynamics. The addition of noise in these models is proven
to have significant effects. In section 7 we make some concluding remarks about our results
and pose some open questions.

2. Definitions and examples. Let M be a separable metric space with metric d, and
F : M → M a continuous map. Given A ⊂ M and x ∈ M , let dist(x,A) = inf{d(x, y) :
y ∈ A}, and for δ ≥ 0 let N(A, δ) = {y ∈ M : dist(y,A) ≤ δ}. For notational convenience,
when A = {x} we write N(x, δ) instead of N({x}, δ). We recall a few definitions from
dynamical systems theory. Given a subset S ⊂ M , define Fn(S) = {Fn(x) : x ∈ S} and
ω(S) =

⋂
n>0

⋃
m≥n F

m(S), with the notational adaptation to ω(x) in the case S = {x}. A
set A ⊂ M is F -forward invariant if F (A) ⊂ A, and F -invariant if F (A) = A. A compact
set A ⊂ M is an attractor for F if there exists a compact neighborhood U of A such that
ω(U) = A. The basin of attraction of a compact F -invariant set A ⊂ M is the set of points
x ∈ M such that ω(x) ⊂ A. A point x ∈ M is recurrent for F if x ∈ ω(x).

For the map F , specific forward invariant sets may be viewed as absorbing under stochastic
perturbations of F . In population models, for example, these forward invariant sets may corre-
spond to the extinction of one or more species, subpopulations, phenotypes, or genotypes. To
allow for a mathematical framework flexible enough for structured and unstructured ecological
models, replicator equations, and hybrids of these models, we make the following definitions.

Definition 1. An absorbing π-system for F is a finite collection A of closed F -forward
invariant subsets of M which includes the set M and which is closed under intersection (i.e.,
A,B ∈ A implies that A ∩B ∈ A). An element of A is called an absorbing set.

Definition 2. For x ∈ M define the minimal absorbing set for x, denoted A∗(x), to be the
smallest element in A containing x.

Definition 3. For any set A ⊂ M and δ ≥ 0 define the ap δ-neighborhood of A as

Nap(A, δ) =
⋃
x∈A

N(x, δ) ∩ A∗(x).

The index ap refers to absorption preservation. For notational convenience we write Nap(x, δ)
instead of Nap({x}, δ).

For a given map F : M → M there are many potential choices of an absorbing π-
system, corresponding to different choices about how random perturbations affect the system.
Assuming that a π-system A has been chosen, we make the following definition.

Definition 4. For ε ≥ 0, a random ε-perturbation of F respecting the absorbing π-system A
is a (discrete time) Markov chain Xε, taking values in M and with transition kernel P ε

. ,

P ε
x(Γ) = P (Xε

t+1 ∈ Γ|Xε
t = x) for all x ∈ M and for all Borel subsets Γ ⊆ M,

which satisfies

H1. P ε
x(Nap(F (x), ε)) = 1.
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296 FRANS JACOBS AND SEBASTIAN J. SCHREIBER

H1 ensures that the forward invariant sets in A are absorbing for Xε and that random
ε-perturbations are ε small. When A = {M}, we recover random perturbations considered by
Kifer [12] and Ruelle [16].

To illustrate choices of random ε-perturbations that satisfy H1, we introduce several ex-
amples. In these examples, if Xε

t is a vector, then Xε
t,i denotes the ith component of Xε

t .

2.1. Ecological equations. Consider M given by Rk
+ = {x = (x1, . . . , xk) ∈ Rk : xi ≥ 0},

where x = (x1, . . . , xk) is the vector of population densities. Let d(x, y) = maxi |xi − yi|. If
fi(x) denotes the per capita growth rate of the ith population, then F (x) = (x1f1(x), . . . ,
xkfk(x)) defines an ecological difference equation. For the sake of simplicity, we assume that
there exists ξ ≥ 1 such that F (Rk

+) ⊂ [0, ξ]k (i.e., F is a compact map). For this map we illus-
trate three choices of noise, corresponding to environmental, demographic, and immigration
stochasticity. Combinations of these noises result in different choices of absorbing π-systems.

Environmental stochasticity. Environmental stochasticity occurs when random fluctua-
tions in the environment result in random fluctuations in reproductive or mortality rates. Let
{Zt}t≥0 be a sequence of independent random vectors taking values in [−1/ξ, 1/ξ]k. Let Zt,i

denote the ith component of Zt. Define a random ε-perturbation Xε of F by

Xε
t+1,i = (1 + εZt,i)Fi(X

ε
t ).

Since |(1 + εZt,i)Fi(X
ε
t ) − Fi(X

ε
t )| = ε|Zt,iFi(X

ε
t )| ≤ ε, this choice of Xε satisfies H1 with

respect to the absorbing π-system generated by M and all finite intersections of the sets
{x ∈ Rk

+ : xi = 0}.

Demographic stochasticity. Demographic stochasticity is the effect that the randomness
of birth and death processes has on finite populations. Let γ 
 1 denote the habitat size,
Ni = xiγ the abundance of population i, di = di(ε) ∈ (0, 1) the probability that an individual
of population i dies, and fi(x)/(1 − di) the number of progeny produced per individual of
population i. If reproduction is deterministic and followed by independent stochastic deaths,
the number of surviving individuals of population i is given by a binomial random variable
with mean (1 − di)Nifi(x)/(1 − di) = Nifi(x) and standard deviation

√
diNifi(x). If we

approximate these binomials by appropriately truncated normal random variables Zt,i(x),
then Xε

t+1,i = Fi(X
ε
t ) + Zt,i(X

ε
t ), i = 1, . . . , k, satisfies H1 with respect to the absorbing

π-system generated by M and all finite intersections of the sets {x ∈ Rk
+ : xi = 0}.

Immigration stochasticity. Suppose that a subset of populations I ⊂ {1, . . . , k} receives
a random influx of immigrants. To model this, let {Zt}t≥0 be a sequence of random vectors
with support in [0, 1]k. For populations i /∈ I we assume that Zt,i = 0, i.e., no immigrants.
The random ε-perturbation of F given by Xε

t+1 = F (Xε
t )+ εZt satisfies H1 with respect to the

absorbing π-system generated by M and all finite intersections of the sets {x ∈ Rk
+ : xi = 0}

for i /∈ I.

Combined random perturbations. In addition to the random perturbations mentioned
above, combinations of these random perturbations (e.g., demographic and environmental
stochasticity) will also satisfy H1 with respect to the appropriate absorbing π-system.
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RANDOMLY PERTURBED DYNAMICS WITH ABSORBING STATES 297

2.2. Replicator difference equations. Consider M = {x ∈ Rk
+ :

∑k
i=1 xi = 1}, where

x = (x1, . . . , xk) is the vector of strategy frequencies. Let d(x, y) = maxi |xi − yi|. If fi(x) is
the relative fitness of the ith strategy, then

F (x) =

(
x1f1(x)∑
j xjfj(x)

, . . . ,
xkfk(x)∑
j xjfj(x)

)

defines the distribution of strategies in the next generation, and is called a replicator equation
(see, e.g., [9]).

Environmental and demographic stochasticity. These forms of random perturbations
can be developed for replicator equations in a manner similar to the ecological equations.

Random mutations. Imagine that for every strategy i ∈ {1, . . . , k} there is a collection
of strategies Ii ⊂ {1, . . . , k} that randomly mutate to strategy i. We assume that Ii always
includes i. Let {Zt(i, j)}t≥0 be a sequence of independent random variables that represent
the fraction of strategy i individuals that mutate to strategy j at time t. For each t ≥ 0 we
require Zt(i, j) ≥ 0,

∑k
j=1 Zt(i, j) = 1, and Zt(j, i) > 0 if and only if j ∈ Ii. Define Xε by

Xε
t+1,i =

∑
j∈Ii Zt(j, i)X

ε
t,j fj(X

ε
t )∑k

j=1 X
ε
t,j fj(X

ε
t )

.

Under the assumption that Zt(i, j) ≤ ε
k−1 for all i, j ∈ {1, . . . , k} and i �= j, Xε satisfies H1

with respect to the absorbing π-system generated by M and the sets {x ∈ M : xj = 0 for all
j ∈ Ii} with i = 1, . . . , k.

2.3. Age-structured populations. Consider a population with k age classes. Let x =
(x1, . . . , xk) be the population vector, where xi is the density of age class i. A standard model
(see, e.g., [2]) for this population is a nonlinear Leslie matrix model

F (x) =

⎛
⎜⎜⎜⎜⎜⎝

f1(x) f2(x) f3(x) . . . fk−2(x) fk−1(x) fk(x)
s1(x) 0 0 . . . 0 0 0

0 s2(x) 0 . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . 0 sk−1(x) 0

⎞
⎟⎟⎟⎟⎟⎠x,

where fi is the mean number of progeny produced per generation by an individual in age
class i, and si is the probability that an individual survives from age class i to age class i+ 1.
For an age-structured model one can add demographic, environmental, and immigrational
stochasticity to each of the age classes. For instance, demographic stochasticity via truncated
normal approximations can be used to represent variability in survivorship between age classes
and variability in fecundities within each reproductive age class. Depending on the number of
reproductive age classes, demographic stochasticity can result in different forms of absorbing
π-systems. For example, if the population is semelparous with f1 = f2 = · · · = fk−1 = 0
and fk �= 0, then the natural absorbing π-system is given by M , ∪i{x ∈ Rk

+ : xi = 0},
∪i1>i2{x ∈ Rk

+ : xi1 = xi2 = 0}, . . . , {0}. Alternatively, if the population is significantly
iteroparous, e.g., fi > 0 for all i, then the natural absorbing π-system consists of M and {0}.

D
ow

nl
oa

de
d 

09
/0

6/
22

 to
 7

1.
23

3.
37

.1
57

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



298 FRANS JACOBS AND SEBASTIAN J. SCHREIBER

3. Empirical and natural invariant measures. Given Xε, define for t ≥ 1 the empirical
measures νεt by

νεt =
1

t

t∑
i=1

δXε
i
,

where δx is a Dirac measure based at the point x ∈ M . One can think of empirical measures as
corresponding to plotting a single pixel at each of the points Xε

1, . . . , X
ε
t , for increasing values

of t. As one continues to plot these pixels, certain regions of the phase space M get darkened
more than other regions of the phase space. To describe the limiting picture, we consider
weak* limit points of the sequence νε1, ν

ε
2, ν

ε
3, . . . . To define a weak* limit point, consider any

continuous function h : M → R. The average of this function with respect to νεt is the average
observed value of h up to time t:

∫
M

h(x) dνεt (x) =
1

t

t∑
i=1

h(Xε
i ).

A weak* limit point of the sequence νε1, ν
ε
2, . . . is a Borel probability measure με such that

there exists an increasing sequence of times {tn}∞n=1 satisfying

lim
n→∞

1

tn

tn∑
i=1

h(Xε
i ) =

∫
M

h(x) dμε(x)

for all bounded continuous functions h : M → R.
As we show below, these limit points με are often invariant measures for Xε, i.e., for every

Borel set Γ ⊂ M , ∫
M

P ε
x(Γ) dμε(x) = με(Γ).(1)

In the special case of ε = 0, (1) simplifies to

μ0(F−1(Γ)) = μ0(Γ),

and μ0 is an invariant measure of F . Another means of defining an invariant measure for Xε

is to introduce the operator P∗
ε on the space of probability measures:

P∗
ε (μ)(Γ) =

∫
M

P ε
x(Γ) dμ(x),

where μ is a Borel probability measure and Γ is a Borel subset of M . An invariant measure
μ for Xε is just a fixed point of P∗

ε , i.e., P∗
ε (μ) = μ. The importance of this invariance lies

in the fact that when ε > 0 is sufficiently small, the invariant measures με for Xε obtained as
weak* limit points of the sequence {νεt}t≥1 will be well approximated by invariant measures
of F . In particular, this will mean that if ε > 0 is sufficiently small, Xε will spend most of
its time near the supports of specific invariant measures of F . Recall that the support of a
probability measure μ, denoted supp(μ), is the intersection of all closed sets K with μ(K) = 1.
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Theorem 1. Let F : M → M be a continuous map, A an absorbing π-system for F , and Xε

a random ε-perturbation of F respecting A. Assume that A ∈ A and that B is an attractor for
F |A. If Xε

0 lies in the basin of attraction of B, then for ε ≥ 0 sufficiently small the sequence
νε1, ν

ε
2, ν

ε
3, . . . has (with probability one) weak* limit points. These limit points are invariant

measures for Xε, with support in B’s basin of attraction.

Remark. Recall that F : M → M is dissipative if it admits a compact global attractor.
Theorem 1 ensures the existence of invariant measures for random perturbations Xε of a
dissipative F whenever ε ≥ 0 is sufficiently small.

Proof. By H1 it suffices to prove the theorem when A = {M}. Consequently, suppose
that B ⊂ M is an attractor for F and that x ∈ M is in the basin of attraction of B. Assume
that Xε

0 = x. Let V be a compact neighborhood of B such that V is contained in B’s basin of
attraction, and such that F (V ) is contained in the interior of V . Since B is an attractor, there
exists a natural number T such that F T (x) is contained in the interior of V . By continuity
of F there exists an ε1 > 0 such that if x0 = x, x1, . . . , xT ∈ M satisfy d(xi, F (xi−1)) ≤ ε1
for i = 1, . . . , T , then xT is contained in the interior of V . In particular, if ε ≤ ε1, then
Xε

T is contained in the interior of V with probability one. Choose ε2 ∈ (0, ε1) such that
N(F (V ), ε2) ⊂ V . Define

U =
⋃

{x0 = x, . . . , xT : d(xi, F (xi−1)) ≤ ε2 for i = 1, . . . , T}.

Our choice of ε2 implies that, with probability one, Xε
t ∈ U ∪ V for all t ≥ 0 and ε ∈ [0, ε2).

Hence, for ε ∈ [0, ε2) the empirical measures νεt , t ≥ 1, with probability one are supported by
the compact set U ∪ V . By weak* compactness of the Borel probability measures supported
in U ∪ V , there exists a weak* limit point με of the sequence {νεt}t≥1 as t → ∞.

To see the invariance of this weak* limit point, let h : M → R be any continuous and
bounded function. Let Ft denote the σ-algebra generated by Xε

1, . . . , X
ε
t . Define sequences

{Yt}t≥1 and {Zt}t≥1 by

Yt =
1

t

(
h(Xε

t ) − E[h(Xε
t )|Xε

t−1]
)

and

Zt =

t∑
i=1

Yi.

{Zt}t≥1 is a martingale with respect to {Ft}t≥1, as

E[Zt+1 − Zt|Ft] = E[Yt+1|Ft]

=
1

t + 1

(
E[h(Xε

t+1)|Ft] − E[h(Xε
t+1)|Ft]

)
= 0.

Let ‖h‖ = supx∈M |h(x)|. Since E[Yt+1|Ft] = 0, we get that
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∣∣∣E[Z2
t+1]

∣∣∣ =

∣∣∣∣∣∣E
⎡
⎣( t+1∑

i=1

Yi

)2
⎤
⎦
∣∣∣∣∣∣

=

∣∣∣∣∣E
[∑

i

Y 2
i + 2

∑
i>j

YiYj

]∣∣∣∣∣
=

∣∣∣∣∣
∑
i

E[Y 2
i ] + 2

∑
i>j

E[E[YiYj |Fi−1]

∣∣∣∣∣
=

∣∣∣∣∣
∑
i

E[Y 2
i ] + 2

∑
i>j

E[YjE[Yi|Fi−1]]

∣∣∣∣∣
=

∣∣∣∣∣
∑
i

E[Y 2
i ]

∣∣∣∣∣ =

∣∣∣∣∣
∑
i

E

[
1

i2
(h(Xε

i ) − E[h(Xε
i )|Fi−1])

2

]∣∣∣∣∣
≤

t+1∑
i=1

1

i2
4‖h‖2.

Hence, {Zt}t≥1 is an L2 martingale, and Doob’s convergence theorem implies that limt→∞ Zt

converges with probability one. By Kronecker’s lemma,

lim
t→∞

1

t

t∑
i=1

(h(Xε
i ) − E[h(Xε

i )|Fi−1]) = 0

with probability one. Now suppose that limi→∞ νεti converges weakly to με. The previous
estimate implies that∫

h(x) dμε(x) −
∫

h(x) dP∗
ε (με)(x) = lim

i→∞

∫
h(x) dνεti(x) −

∫ ∫
h(y) dP ε

x(y) dνεti(x)

= lim
i→∞

1

ti

ti∑
t=1

(
h(Xε

t ) −
∫

h(y) dP ε
Xε

t
(y)

)

= lim
i→∞

1

ti

ti∑
t=1

(h(Xε
t ) − E[h(Xε

t )|Ft−1])

+
1

ti

(
E[h(Xε

1)|F0] − E[h(Xε
ti+1)|Fti ]

)
= 0

with probability one. Since h is an arbitrary continuous bounded function and M is separable,
the weak* limit point με is with probability one an invariant Borel probability measure for
Xε.

In particular this theorem with ε = 0 implies that if F has an attractor, then F has an
invariant measure. The invariant measures for F may be quite numerous. For instance, any
equilibrium or periodic orbit of F , whether stable or unstable, supports an invariant measure.
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However, it is natural to assume that some of the invariant measures are more physically or
biologically relevant than other invariant measures. For instance, intuition dictates that an
invariant measure supported on an unstable fixed point is unlikely to be observed in nature,
while an invariant measure supported on a stable fixed point is more likely to be observed.
To pick out physically or biologically relevant invariant measures suppose that, for all ε > 0
sufficiently small, Xε has an invariant measure με as obtained in Theorem 1. A standard
argument (see, e.g., Kifer [12]) implies that the weak* limit points of these με as ε ↓ 0 are
F -invariant measures.

Theorem 2. Let, for each ε > 0 sufficiently small, με be an invariant Borel probability
measure for Xε. If μ is a weak* limit point of με as ε ↓ 0, then μ is F -invariant.

We define these weak* limit points as natural F -invariant measures. An immediate corol-
lary of Theorems 1 and 2 is the following.

Corollary 1. If F admits an attractor, then F has a natural F -invariant measure.

In the next two sections we investigate, under an additional set of assumptions, the sup-
ports of these natural invariant measures.

4. Absorption preserving chain attractors. To understand where the dynamics of Xε

eventually settles when ε > 0 is small, we define in this section absorption preserving chain
attractors. These attractors generalize the notion of attractor as introduced by Ruelle in [16],
which are obtained for dynamical systems under arbitrarily small perturbations in case the
absorbing π-system consists solely of a compact state space. Absorption preserving chain at-
tractors also are a generalization of the extinction preserving chain attractors, defined in [10]
for unstructured populations and extended in [7] to the case of structured populations. Ex-
tinction preserving chain attractors for a community-dynamical system under arbitrarily small
perturbations are equal to absorption preserving chain attractors in case the absorbing π-
system is taken to be the community state space together with the collection of all extinction
sets for the populations. The derivation below is an adaptation of the derivation of extinction
preserving chain attractors as presented in section 3 of [10] to discrete-time dynamical sys-
tems and absorbing π-systems. We take the state space M to be compact, e.g., by restricting
ourselves to a compact global attractor.

Definition 5. Let ε ≥ 0. A sequence x0, . . . , xn of elements in M such that d(xt+1, F (xt)) ≤
ε and xt+1 ∈ A∗(F (xt)) for all t ∈ {0, . . . , n− 1} is called an absorption preserving ε-pseudo-
orbit (or ap ε-pseudo-orbit) of F .

An ap ε-pseudo-orbit x0, . . . , xn is said to have length n and to go from x0 to xn. Two
ap ε-pseudo-orbits x0, . . . , xn and y0, . . . , ym of lengths n and m, respectively, and with
d(y0, F (xn)) ≤ ε and y0 ∈ A∗(F (xn)) by concatenation can be combined into the ap ε-
pseudo-orbit x0, . . . , xn, y0, . . . , ym of length n + m + 1 going from x0 to ym. The notion of
an absorption preserving ε-pseudo-orbit reflects the character of irreversibility attached to
absorption. In addition, we define ap-chain recurrency as follows.

Definition 6. A point x is ap-chain recurrent if for every ε > 0 and every n > 0 there is
an ap ε-pseudo-orbit of length ≥ n going from x to x. The set of ap-chain recurrent points is
called the ap-chain recurrent set.

Using ap-pseudo-orbits, we introduce a partial ordering on M and a corresponding equiv-
alence relation on M .
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302 FRANS JACOBS AND SEBASTIAN J. SCHREIBER

Definition 7. For x, y ∈ M we define x �ap y (“x ap-chains to y”) if for every ε > 0 there
exists an ap ε-pseudo-orbit going from x to y.

The relation �ap (to be called ap-chaining) is a preorder on M . Ap-chaining is not
necessarily a closed relation: if (xi)i≥0 and (yi)i≥0 are two sequences in M that converge to
x and y, respectively, and are such that xi �ap yi for all i, then not necessarily x �ap y; e.g.,
take x and y such that A∗(x)

⋂
A∗(y) = ∅.

Definition 8. For elements x, y ∈ M , define x ∼ap y if x �ap y and y �ap x.

Since �ap is a preorder, ∼ap is an equivalence relation on M , to be called mutual ap-
chaining. The equivalence class of x under ∼ap is denoted as [x]ap, and Map denotes the set
of equivalence classes in M under ∼ap. The expression x ∼ap y (“x and y ap-chain to each
other”) implies that both x and y belong to A∗(x)∩A∗(y), and consequently A∗(x) = A∗(y).
In the sense indicated above, the relation ∼ap may not be closed.

Definition 9. [x]ap is called an ap-basic class if x is ap-chain recurrent.

Three equivalent statements can be made for ap-basic classes, as follows.

Proposition 1. The following three statements are equivalent:

1. [x]ap is an ap-basic class;
2. x is a fixed point, or [x]ap contains more than one point;
3. for all t ≥ 0, F t([x]ap) = [x]ap.

Definition 10. For elements [x]ap, [y]ap ∈ Map the relation �ap is defined by [x]ap �ap [y]ap
if x �ap y.

The relation �ap (to be called ap-connecting) is a partial ordering on the set of equivalence
classes of ∼ap. By means of �ap we define ap-chain attractors for dynamical systems with
absorbing π-systems.

Definition 11. [x]ap is an ap-chain attractor for (F,A) if it is a minimal element of the
ordering �ap.

An ap-chain attractor is an ap-basic class, and, by Proposition 1, contains the ω-limit sets
of all its elements. Existence of ap-chain attractors follows the same line of reasoning that
guarantees the existence of attractors as presented by Ruelle in [16], which uses Zorn’s lemma
and the fact that M is compact. In particular an ap-chain attractor will be closed.

Definition 12. For an ap-chain attractor [x]ap, the collection of points {y ∈ M : y �ap x}
is called the basin of ap-chain attraction of [x]ap.

The basin of ap-chain attraction for an ap-chain attractor [x]ap is not empty, since x ∈
[x]ap. Furthermore, each element in M belongs to the basin of ap-chain attraction of at least
one ap-chain attractor.

5. Random perturbations and ap-chain attractors. In this section we assume that F :
M → M is dissipative. We show that when ε > 0 is sufficiently small, Xε spends most of
its time near the ap-chain attractors of F . To accomplish this goal, we need to place the
following two additional hypotheses on Xε:

H2. For each ε > 0 there exists a δ = δ(ε) ∈ (0, ε) such that P ε
x(Nap(y, γ)) > 0 for all

x, y ∈ M and γ > 0 satisfying Nap(y, γ) ⊂ Nap(F (x), δ).
H3. For each ε > 0, if P ε

x(K) > 0 for a closed set K ⊂ M , then there exists a neighborhood
U (depending on x and ε) of x such that infy∈U P ε

y(K) > 0.
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RANDOMLY PERTURBED DYNAMICS WITH ABSORBING STATES 303

H2 ensures that “the noise extends locally in all directions that respect the absorbing π-
system.” H3 is a crude continuity-like condition on the supports of the random perturbations.
Even in the case A = {M}, these additional assumptions are weaker than those used by
Ruelle [16] and Kifer [12]. The additional assumptions are immediately satisfied, for instance,
for ecological or replicator equations with demographic stochasticity as described in sections
2.1 and 2.2. In the case of models Xε with k age classes and demographic stochasticity as
described in section 2.3, these additional assumptions are satisfied by replacing the map F
with F k, and the states Xε

t with Xε
kt.

Theorem 3. Let F : M → M be dissipative, A be an absorbing π-system for F , and Xε be
a Markov chain which satisfies H1–H3. If x ∈ M does not lie in an ap-chain attractor for
(F,A), then there exists a neighborhood U of x such that

P (Xε enters U infinitely often) = 0(2)

whenever ε > 0 is sufficiently small.

In principle, the proof of the theorem adapts the proof of Kifer [12, Thm. 4.5] to the
absorption preserving case. However, due to our formulation of H2 (i.e., the support of P ε

x

includes Nap(F (x), δ) instead of including F (Nap(x, δ))), our proof is shorter and more direct.

Proof. Assume that x ∈ M does not lie in an ap-chain attractor. We will show that there
exist points y ∈ M and ε > 0 such that x ap-chains to y but there exists no ap ε-pseudo-orbit
from any element in Nap(y, ε) to any element in Nap(x, ε). Since x does not lie in an ap-chain
attractor, there exists a point y ∈ M such that x ap-chains to y but y does not ap-chain to
x. Choose ε > 0 sufficiently small such that there exists no ap 2ε-pseudo-orbit from y to x.
We proceed in two cases. First, suppose that A∗(F (y)) = A∗(y). Then continuity implies
that there exists η > 0 such that F (Nap(y, η)) ⊂ Nap(F (y), ε). Since there are no ap 2ε-
pseudo-orbits from F (y) to x, there are no ap ε-pseudo-orbits from any element in Nap(y, η)
to any element in Nap(x, ε). Replacing ε with min{η, ε} completes this case. For the second
case, suppose that A∗(F (y)) � A∗(y). Since x ap-chains to y, we have A∗(y) ⊆ A∗(x) and
x /∈ A∗(F (y)). By H1, there is no ap ε-pseudoorbit from F (y) to x. Since x ap-chains to
F (y), replacing y with F (y) completes this case.

Let δ = δ(ε) > 0 be as given by H2. Let x0 = x, x1, . . . , xn = y be an ap δ-pseudo-orbit
from x to y. H2 and H3 allow us to find a neighborhood U of x, an α > 0, and a γ ∈ (0, δ)
such that

P ε
z (Nap(x1, γ)) ≥ α

for all z ∈ U and such that

P ε
z (Nap(xi+1, γ)) ≥ α

for all z ∈ Nap(xi, γ) and i = 1, . . . , n − 1. Define U(0) = U and U(i) = Nap(xi, γ) for
i = 1, . . . , n. We claim that

P (Xε
n ∈ U(n)|Xε

0 = z) ≥ αn for all z ∈ U(0).(3)
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304 FRANS JACOBS AND SEBASTIAN J. SCHREIBER

To prove (3) notice that

P (Xε
n ∈ U(n)|Xε

0 = z) =

∫
· · ·

∫
P ε
zn−1

(U(n)) dP ε
zn−2

(zn−1) . . . dP
ε
z (z1).

Since P ε
z (U(n)) ≥ α1U(n−1)(z) for all z ∈ M , we get that

P (Xε
n ∈ U(n)|Xε

0 = z) ≥ α

∫
· · ·

∫
1U(n−1)(zn−1) dP ε

zn−2
(zn−1) . . . dP

ε
z (z1)

= α

∫
· · ·

∫
P ε
zn−2

(U(n− 1)) dP ε
zn−3

(zn−2) . . . dP
ε
z (z1).

Similarly, applying the estimates P ε
z (U(n− i)) ≥ α1U(n−i−1)(z) for i = 1, . . . , n− 1 yields (3).

The following standard result in Markov chain theory (see, e.g., [4, Chap. 5, Thm. 2.3]) applied
to X = Xε, B = U(n), and C = U(0) yields that

P (Xε enters U(0) infinitely often) = 0.

Theorem 4. Let X be a Markov chain, and suppose that

P

( ∞⋃
m=t+1

{Xm ∈ B}
∣∣∣Xt

)
≥ β > 0 on {Xt ∈ C}.

Then

P ({X enters C infinitely often} \ {X enters B infinitely often}) = 0.

In the words of Chung [4, p. 256]: “The intuitive meaning of the preceding theorem has
been given by Doeblin as follows: if the chance of a pedestrian’s getting run over is greater
than β > 0 each time he crosses a certain street, then he will not be crossing it indefinitely
(since he will be killed first).” In our case “the certain street” is the set U(0) and “getting run
over” is Xε following an ap ε-pseudoorbit from U(0) to U(n). Any time that Xε enters U(n)
it will never return to U(0), as there are no ap ε-pseudo-orbits back from U(n) to U(0).

Recall from Theorem 1 that limit points με of the empirical measures νεt = 1
t

∑t
i=1 δXε

i
as

t → ∞ are invariant measures for Xε. Moreover, by Theorem 2, limit points of these με as
ε ↓ 0 are natural invariant measures of F . Theorem 3 yields the following corollary, which
implies that the natural F -invariant measures are concentrated on F ’s ap-chain attractors.
Consequently, Xε spends most of its time near F ’s ap-chain attractors when ε > 0 is sufficiently
small.

Corollary 2. Let F : M → M be dissipative, and let A be an absorbing π-system for F .
Let {Xε, ε > 0} be a collection of Markov chains that satisfy H1–H3, and let με denote an
invariant Borel probability measure for Xε. All weak* limit points of με as ε ↓ 0 are supported
by the ap-chain attractors for (F,A).

Proof. For all ε > 0, let με be an invariant Borel probability measure for Xε. Let x ∈ M
not lie in any ap-chain attractor. Then there exists an open neighborhood U of x such that

με(U) = 0
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RANDOMLY PERTURBED DYNAMICS WITH ABSORBING STATES 305

for ε > 0 sufficiently small. Since U is an open set, μ(U) = 0 for any weak* limit point μ of
με as ε ↓ 0. Since x was an arbitrary point in the complement of the ap-chain attractors, it
follows that μ is supported by the ap-chain attractors.

Often, attractors for F break up into a finite number of ap-chain attractors for (F,A).
When this occurs, the following result shows that for sufficiently small ε > 0, Xε eventually
remains in an ap ε-neighborhood of one of these ap-chain attractors. Moreover, for ε > 0
sufficiently small, Xε reaches an ap-chain attractor with positive probability only if Xε

0 ap-
chains to an ap-chain attractor.

Theorem 5. Let F : M → M be dissipative, A be an absorbing π-system for F , {Xε, ε > 0}
be a collection of Markov chains that satisfy H1–H3, and Xε

0 = x0 ∈ M for all ε > 0. Assume
that there exist k compact subsets K1, . . . ,Kk of M such that

• for each Ki there exists an A ∈ A such that Ki ⊂ A and Ki is an attractor for F |A;
• ∪iKi contains all the ap-chain attractors for (F,A).

Then for any γ > 0 and ε > 0 sufficiently small

P (there exist s and i such that for all t ≥ s : Xε
t ∈ Nap(Ki, γ)) = 1.(4)

Moreover, if x0 ap-chains to a point in Ki, then for any γ > 0 and ε > 0 sufficiently small

P (there exists an s such that for all t ≥ s : Xε
t ∈ Nap(Ki, γ)) > 0.(5)

If x0 does not ap-chain to any point in Ki, then there is a γ > 0 such that

P (there exists an s such that for all t ≥ s : Xε
t ∈ Nap(Ki, γ)) = 0(6)

whenever ε > 0 is sufficiently small.
Proof. The proof of the theorem relies on the following two lemmas.
Lemma 1. Let F : M → M be a dissipative map and A be an absorbing π-system for F .

For A ∈ A, let B be an attractor for F |A. Then for every γ > 0 there exist ε0 > 0 and
β ∈ (0, γ) such that there is no ap ε0-pseudo-orbit from x to y for all x ∈ Nap(B, β) and
y ∈ M \Nap(B, γ).

Proof. Suppose that the conclusion of the proposition does not hold. Then there is a γ > 0
for which there do not exist an ε0 > 0 and β ∈ (0, γ) such that there is no ap ε0-pseudo-orbit
from x to y for all x ∈ Nap(B, β) and y ∈ M \Nap(B, γ). I.e., in that case, for every ε0 > 0 and
every β ∈ (0, γ) there is an ap ε0-pseudo-orbit from an x ∈ Nap(B, β) to a y ∈ M \Nap(B, γ).
Consequently, by letting ε0 and β become infinitesimally small (but positive), it follows that
there exists an x ∈ B that ap-chains to an element y ∈ M \Nap(B, γ). Necessarily, any
compact neighborhood U of B in A contains part of the set {z ∈ M : x �ap z} by which x
ap-chains to y, and therefore ω(U) � B. This contradicts that B is an attractor for F |A.

Lemma 2. Let F : M → M be dissipative with global attractor B, A be an absorbing π-
system for F , {Xε, ε > 0} be a collection of Markov chains that satisfy H1, and S ⊂ M be
a compact set such that supp({Xε

0}) = S for all ε > 0. Then for every γ > 0 there exist an
ε1 > 0 and n ≥ 0 such that for all ε ∈ (0, ε1]

P (for all t ≥ n : Xε
t ∈ N(B, γ)) = 1.
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306 FRANS JACOBS AND SEBASTIAN J. SCHREIBER

Proof. It suffices to prove the lemma for the case in which A = {M}. Since F is dissipative,
there exists a compact attractor B whose basin of attraction is M . Let S be as in the lemma.
Let γ > 0 be given, and for this γ choose ε0 > 0, β ∈ (0, γ) as given by Lemma 1. Lemma 1
implies that there does not exist an ap ε0-pseudo-orbit from Nap(B, β) to M \ Nap(B, γ).
Since S is compact and lies in the basin of attraction of B, there exists an n such that
Fn(S) ⊂ N(B, β/2). Compactness of S and continuity of F imply that there exists an
ε1 ∈ (0,min{ε0, β2 }) such that every ap ε1-pseudo-orbit x0, . . . , xn with x0 ∈ S satisfies xn ∈
N(B, β). For any Markov chain Xε that satisfies H1 it follows that if ε ≤ ε1, then for any
t ≥ 0 the sequence Xε

0, . . . , X
ε
t is an ap ε1-pseudo-orbit. Since Xε

0 ∈ S, we get with probability
one that Xε

n ∈ N(B, β) and Xε
t ∈ N(B, γ) for t ≥ n whenever ε ∈ (0, ε1].

Let B be the global attractor of F , and let γ > 0 be given. Lemma 2 implies that there
exist an ε0 > 0 and n ≥ 0 such that P (for all t ≥ n : Xε

t ∈ K) = 1 whenever ε ∈ (0, ε0].
Applying Lemma 1 to each of the Ki implies that there exist ε1 ∈ (0, ε0) and β1 ∈ (0, γ) such
that for all 1 ≤ i ≤ k there is no ap ε1-pseudo-orbit from any point in Nap(Ki, β1) to any
point in M \Nap(Ki, γ). Next, we wish to extend the “absorption preserving” neighborhoods
Nap(Ki, β1) of each of the Ki’s to full neighborhoods of the Ki’s such that Xε cannot enter
them too often without getting stuck. Let δ(ε) be as given by H2. Since Ki is F -invariant,
for every ε > 0 there exists η = η(ε) ∈ (0, β1) such that F (x) ∈ N(Ki, δ(ε)/2) whenever
x ∈ N(Ki, η). H1–H3 imply that infx∈N(Ki,η) P

ε
x(Ai) > 0. Applying Theorem 4 with C =

N(Ki, η) \Ai and B = Ai implies that for all ε > 0 and each 1 ≤ i ≤ k

P (Xε
t ∈ N(Ki, η) \Ai infinitely often) = 0.(7)

Let int(N(Ki, η)) denote the interior of N(Ki, η). Since η is strictly positive, every x ∈
K \

⋃k
i=1 int(N(Ki, η)) does not lie in an ap-chain attractor. Theorem 3 implies that for every

x ∈ K \
⋃k

i=1 int(N(Ki, η)) there exists a neighborhood Ux of x and εx > 0 such that for all

ε ∈ (0, εx): P (Xε
t ∈ Ux infinitely often) = 0. Compactness of K \

⋃k
i=1 int(N(Ki, η)) implies

that K \
⋃k

i=1 int(N(Ki, η)) is covered by a finite number of these open neighborhoods, say
Ux1 , . . . , Uxn . Let ε2 = min{εx1 , . . . , εxn , ε1}. Since Xε can enter each element of this finite
collection of neighborhoods only finitely often,

P

(
Xε

t ∈ K \
k⋃

i=1

int(N(Ki, η)) infinitely often

)
= 0(8)

for all ε ∈ (0, ε2).
Equations (7) and (8) imply that

P

(
Xε

t ∈ K \
k⋃

i=1

Nap(Ki, η) infinitely often

)
= 0

for all ε ∈ (0, ε2). Our choice of K implies that

P

(
Xε

t ∈ M \
k⋃

i=1

Nap(Ki, η) infinitely often

)
= 0
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for all ε ∈ (0, ε2). It follows that

P

(
Xε

t ∈
k⋃

i=1

Nap(Ki, η) for some t ≥ 0

)
= 1

for all ε ∈ (0, ε2). Since there are no ap ε2-pseudo-orbits from Nap(Ki, η) to M \ Nap(Ki, γ)
for i = 1, . . . , k, expression (4) follows.

To prove (5), assume that x0 does ap-chain to y ∈ Ki. Then the arguments leading to (3)
imply that P (Xε

t enters Nap(Ki, η) for some t) > 0. Since there are no ap ε2-pseudo-orbits
from Nap(Ki, η) to M \Nap(Ki, γ), expression (5) follows.

To prove (6), assume that x0 does not ap-chain to any point in Ki. For every point y ∈ Ki,
there exists an εy > 0 such that there are no ap 2εy-pseudo-orbits from x0 to y. Hence, there
are no ap εy-pseudo-orbits from x0 to any point in Nap(y, εy). Since Ki is compact, there
are y1, . . . , yn such that Ki ⊂ ∪jNap(yj , εyj ). Let ε3 = minj{εyj}. Then there are no ap
ε3
2 -pseudo-orbits from x0 to any point in Nap(Ki,

ε3
2 ). Hence (6) holds for 0 < ε < ε3

2 and
γ > 0 sufficiently small.

6. Applications. In this section, we apply the results from the previous sections to models
of competing species and replicator dynamics.

6.1. Ecological drift for competing species. When the ecological outcome of compet-
ing species is determined by stochastic forces, ecological drift is said to occur. Here we
illustrate two scenarios, ecologically equivalent competing species and intermingled basins of
competitive exclusion, for which ecological drift occurs. Let x1 and x2 be the densities of two
competing species. The competing species are ecologically equivalent if the per capita growth
of each species is of the form f(x1 + x2), in which case the competitive dynamics are given
by F (x1, x2) = (x1f(x1 + x2), x2f(x1 + x2)). The following proposition proves that, under
suitable assumptions on f and the noise, ecological drift occurs in the sense that competitive
exclusion of either species occurs with positive probability for all positive initial conditions.
Figure 1 illustrates how the probability of exclusion can depend on initial conditions for the
map F (x1, x2) = (3.9x1(1− x1 − x2), 3.9x2(1− x1 − x2)) with additive uniformly distributed
noise on [−0.01, 0.01].

Proposition 2. Let m > 0 (i.e., the maximum density supported by the population) and
M = {(x1, x2) ∈ R2

+ : x1 + x2 ≤ m}. Let f : [0,m] → R+ be a continuous decreasing
function with f(0) > 1, f(m) < 1, f > 0 on [0,m), and xf(x) ≤ m for all x ∈ [0,m]. Let
F (x1, x2) = (x1f(x1 + x2), x2f(x1 + x2)), A = {M, {0} × [0,m], [0,m] × {0}, (0, 0)}, and
{Xε, ε > 0} be a collection of Markov chains satisfying H1–H3. Then there exists a > 0 such
that for all x1x2 > 0 and ε > 0 sufficiently small

P ε
x(X

ε
t ∈ {0} × [a,m] ∪ [a,m] × {0} for t sufficiently large) = 1,

P ε
x(X

ε
t ∈ {0} × [a,m] for t sufficiently large) > 0,

and

P ε
x(X

ε
t ∈ [a,m] × {0} for t sufficiently large) > 0.
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308 FRANS JACOBS AND SEBASTIAN J. SCHREIBER

Figure 1. The probability of extinction of species 1 as a function of the initial conditions. These probabilities
were computed for the map F (x1, x2) = (3.9x1(1−x1−x2), 3.9x2(1−x1−x2)) with additive uniformly distributed
noise on [−0.01, 0.01].

Proof. Consider the change of variables u = x1 + x2 and v = x2
x1+x2

. In this coordinate
system, F is given by G(u, v) = (uf(u), v), provided that u > 0, and M is given by [0,m] ×
[0, 1]. Our assumptions of f imply that there is an attractor A1 ⊂ (0,m) for u �→ uf(u)
whose basin of attraction is (0,m). Hence, A = A1 × [0, 1] is an attractor for G with a basin
of attraction including (0,m) × [0, 1]. The basin of attraction does not include {m} × [0, 1]
whenever f(m) = 0. Since G2(u, v) = v, all points in (0,m) × [0, 1] ap-chain to points
in A1 × {0} and to points in A1 × {1}. Applying Theorem 5 completes the proof of the
proposition.

Another way that ecological drift can occur is when the competing species exhibit inter-
mingled basins of competitive exclusion. In the words of [8], this occurs when for “almost
all initial conditions one of the two species dies out. But the survivor is unpredictable: The
basins of the two chaotic one species attractors are everywhere dense.” Hofbauer et al. [8]
have proven the existence of an intermingled basin for a class of maps. For systems of this
type, Theorem 5 implies the following proposition about ecological drift. Figure 2 illustrates
a potential intermingled basin of competitive exclusion for F (x1, x2) = (3.9x1(1−x1−x2)(1+
0.1x2 sin(2π(x1 + x2))/(x1 + x2)), 3.9x2(1 − x1 − x2)(1 − 0.1x1 sin(2π(x1 + x2))/(x1 + x2)))
and the effect of additive uniformly distributed noise.

Proposition 3. Let m > 0 (i.e., the maximum density supported by the population) and
M = {(x1, x2) ∈ R2

+ : x1 + x2 ≤ m}, F : M → M be a continuous map of the form
F (x1, x2) = (x1f1(x1, x2), x2f(x1, x2)), A = {M, {0} × [0,m], [0,m] × {0}, (0, 0)}, and {Xε,
ε > 0} be a collection of Markov chains satisfying H1–H3. Assume that F has ap-chain
attractors A1 ⊂ (0,m) × {0} and A2 ⊂ {0} × (0,m) such that each basin of attraction of Ai

is dense in M , A1’s basin includes (0,m) × {0}, and A2’s basin includes {0} × (0,m). Then
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Figure 2. Intermingled basins of competitive exclusion and the probability of extinction of species 2 as a
function of the initial conditions. In the left panel, each initial condition for F (x1, x2) = (3.9x1(1−x1−x2)(1+
0.1x2 sin(2π(x1 + x2))/(x1 + x2)), 3.9x2(1− x1 − x2)(1− 0.1x1 sin(2π(x1 + x2))/(x1 + x2))) was iterated 1,000
time steps, and the final density of species 2 is plotted. Warmer colors correspond to higher densities, and
cooler colors correspond to lower densities. In the right panel, the map was perturbed by additive uniformly
distributed noise on [−0.01, 0.01], and the probability of extinction of species 1 was computed for a grid of initial
conditions.

there exists a > 0 such that for all x1x2 > 0 and ε > 0 sufficiently small

P ε
x(X

ε
t ∈ {0} × [a,m] ∪ [a,m] × {0} for t sufficiently large) = 1,

P ε
x(X

ε
t ∈ {0} × [a,m] for t sufficiently large) > 0,

and

P ε
x(X

ε
t ∈ [a,m] × {0} for t sufficiently large) > 0.

6.2. Asymmetric games. In evolution, players in different positions may engage in asym-
metric conflicts. For the case of two types of players and two strategies, one can assume
without loss of generality that the payoff matrix for one type of player, say females, is of the
form [

0 a12

a21 0

]
,

while the payoff matrix for the other type of player, say males, is of the form[
0 b12
b21 0

]
.

For this payoff structure, the game dynamics is given by

dx

dt
= x(1 − x)(a12 − (a12 + a21)y),(9)

dy

dt
= y(1 − y)(b12 − (b12 + b21)x),
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where x and y are frequencies of strategy 1 for males and females, respectively. Let M =
[0, 1]× [0, 1], let (φt)t≥0 denote the flow of the game dynamics, and let F = φh for some h > 0.
The dynamics of this game is well studied (see Hofbauer and Sigmund [9]) and fall generically
into the following four cases:

I. a12a21 < 0: One of the two strategies of the females dominates the other: x converges
monotonically to 0 or 1.

II. b12b21 < 0: One of the two strategies of the males dominates the other: y monotonically
converges to 0 or 1.

III. a12a21 > 0, b12b21 > 0, and a12b12 > 0: There is a unique interior equilibrium

(x∗, y∗) =

(
b12

b12 + b21
,

a12

a12 + a21

)
,

which is a saddle, and almost every initial condition converges to opposite corners
of M .

IV. a12a21 > 0, b12b21 > 0, and a12b12 < 0: The unique equilibrium (x∗, y∗) is neutrally
stable, and all orbits in M are periodic orbits surrounding (x∗, y∗).

Consider random perturbations Xε of F corresponding to demographic stochasticity with
or without environmental stochasticity. Xε satisfies H1–H3 with respect to the absorbing
π-system generated by M , {(0, y) : y ∈ [0, 1]}, {(1, y) : y ∈ [0, 1]}, {(x, 0) : x ∈ [0, 1]}, and
{(x, 1) : x ∈ [0, 1]}. For cases I–IV, the only ap-chain attractors are the boundary equilibria
(0, 1), (1, 0), (0, 0), and (1, 1). Hence, Theorem 5 implies that, with probability 1, Xε converges
to one of these boundary equilibria in finite time. Moreover, if Xε

0 ∈ (0, 1)×(0, 1), then for cases
I–III, Xε converges with positive probability only to a subset of the boundary equilibria, while
for case IV, Xε converges to any boundary equilibrium with positive probability (Figure 3).

7. Discussion. Our analysis studies the effect of localized noise on discrete-time dynamical
systems with absorbing sets. Noise is represented by a discrete time Markov chain that in
each time step acts on the deterministic image of a state. Certain regions of the state space
are assumed to be absorbing, in that the system cannot leave (either deterministically or
by a random perturbation) these regions once it has entered such a region, e.g., extinction
boundaries in the absence of immigration or mutations. Thus, we assume that noise respects
the absorbing sets (H1). We prove that if an unperturbed system has an attractor, then for
sufficiently small perturbations the perturbed system has invariant probability measures that
describe the asymptotic behavior of the system. Letting the size of the random perturbations
go to zero, natural invariant measures for the unperturbed system are obtained as limit points
of the invariant measures for the perturbed system. Provided that the random perturbations
are sufficiently small, the asymptotic dynamics of the perturbed system is well described by
these natural invariant measures.

Adding two more assumptions to our formalism—namely, within each absorbing set noise
may locally perturb the dynamics into all admissible directions (H2), and nonzero noise is
locally sustained (H3)—allows us to derive that the natural invariant measures of an unper-
turbed system are supported by the ap-chain attractors. First we show that if a state does
not belong to an ap-chain attractor, then under sufficiently small perturbations, this state
has a neighborhood which the system cannot enter infinitely often. Next we prove that, given
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Figure 3. Four realizations of (9) are shown with a12 = a21 = 2 and b12 = b21 = −2 with demographic
stochasticity of size ε = 0.01.

that the ap-chain attractors are contained in the attractors of the unperturbed system, there
exists an attractor such that for any neighborhood of that attractor and sufficiently small
perturbations, the perturbed system will be restricted to that neighborhood within a finite
amount of time. In addition, if small noise is capable of bringing a system into an attractor,
then there is a positive probability that the randomly perturbed system will be restricted to
an arbitrary neighborhood of that attractor within a finite amount of time.

Although our statements may sound intuitively clear, to our knowledge so far no mathe-
matical proofs have been presented in the literature that support them, given our assumptions
H1–H3 on the random perturbations. The papers [10] and [7] introduce the notion of extinc-
tion preserving chain attractors, but their relation to the effect of small random perturbations
on the dynamics is dealt with only on the intuitive level and does not provide an analysis for
the case of random perturbations. Ruelle in his paper [16] derives a result similar to ours if the
full state space is the only absorbing set; namely, the randomly perturbed system statistically
spends most of its time in a neighborhood of the chain attractors. However, even when the
full state space is the only absorbing set, his work differs from ours in that our assumptions
on the random perturbations are weaker [16, p. 145]. Moreover, our assumptions H2 and H3
on supports make the proof of our Theorem 3 and its Corollary 2 more straightforward than
the proof of the similar statements in Ruelle’s setting, as follows from comparison of our proof
with, e.g., a proof given by Kifer (the proof of Theorem 4.5 in [12]).

Since small random perturbations are omnipresent in reality, our work explains their ef-
fects on community dynamics. A combination of small random perturbations with larger
perturbations might lead to a better understanding of fluctuations of population densities due
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312 FRANS JACOBS AND SEBASTIAN J. SCHREIBER

to the presence of multiple ap-chain attractors. Although sufficiently small perturbations,
e.g., those due to environmental stochasticity, are likely to bring the system close to a spe-
cific ap-chain attractor, irregular appearances of sufficiently large perturbations might cause
the system to change its basin of ap-chain attraction. Large random perturbations are not,
however, covered by our framework, and their inclusion in the theory is a possible direction
for further research.
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