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 OIKOS 105: 349-358, 2004

 From simple rules to cycling in community assembly

 Sebastian J. Schreiber and Seth Rittenhouse

 Schreiber, S. J. and Rittenhouse, S. 2004. From simple rules to cycling in community
 assembly. - Oikos 105: 349-358.

 Simulation studies of community assembly have frequently observed two related
 phenomena: (1) the humpty dumpty effect in which communities can not be
 reconstructed by "sequential" invasions (i.e. single species invasions separated by
 long intervals of time) and (2) cycling between sub-communities. To better understand
 the mechanisms underlying these phenomena, we analyze a system consisting of two
 predators and two prey competing for a shared resource. We show how simple
 dominance rules (i.e. R and P* rules) lead to cycling between sub-communities
 consisting of predator-prey pairs; predator and prey invasions alternatively lead to
 prey displacement via apparent competition and predator displacement via exploitative
 competition. We also show that these cycles are often dynamically unstable in the
 population phase space. More specifically, while for too slow invasion rates (i.e.
 "sequential" invasions) the system cycles indefinitely, faster invasion rates lead to
 coexistence of all species. In the later case, the assembly dynamics exhibit transient
 cycling between predator-prey subcommunities and the length of these transients
 decreases with the invasion rate and increases with habitat productivity.

 S. J Schreiber, 114 Jones Hall, College of William and Mary, PO Box 8795,
 Williamsburg, VA 23187-8795, USA (sjschr~wm.edu). - S. Rittenhouse, Western
 Washington Univ., 516 High Street Mailstop 9063, Bellingham, WA 98225-9063, USA.

 Understanding rules and patterns of community assem-

 bly is a central theme in community ecology (Belyea and

 Lancaster 1999). Theoretical approaches to understand-

 ing community assembly divide roughly into two camps,

 the in-depth analysis of simple systems and Monte-Carlo

 simulations of complex systems. An ecological system

 may be classified as simple because either it consists only

 of a few interacting species (Holt 1977, Tilman 1980,

 Polis and Holt 1992, Holt and Lawton 1994, Holt et al.

 1994, Holt and Polis 1997) or it involves a high number

 of species few of which interact (Hsu et al. 1978,

 Wolkowicz 1989 and Grover 1994). By studying these

 simpler systems, theoretical ecologists often uncover

 rules that govern the community assembly processes

 (Belyea and Lancaster 1999). On the other hand,

 simulation studies aid our understanding of more

 complex communities by monitoring how attributes

 such as species richness, invasion resistance, and pre-

 dator-prey ratios change over time and by uncovering

 statistical relationships between assembly outcomes and

 source pool attributes (Post and Pimm 1983, Yodzis

 1986, Case 1990, Drake 1990, Law and Blackford 1992,

 Luh and Pimm 1993, Law and Morton 1993, 1996,

 Lockwood et al. 1997, Hewitt and Huxel 2002).

 A fundamental question addressed by both theoretical

 approaches is what are the possible end points of the

 assembly process? Two types of ending are possible;

 either a sequence of invasions terminates in a community

 that resists all invasion attempts or the community cycles

 endlessly between a finite set of subcommunities. Studies

 of simple communities with exploitative competition,

 apparent competition and intraguild predation shown

 that assembly invariably leads to an invasion resistant

 state (Hsu et al. 1977, Wolkowicz 1989, Polis and

 Holt 1992, Grover 1994, Holt et al. 1994, Holt

 and Polis 1997). In simulations of high dimensional
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 Lotka-Volter-ra competitive communities, Yodzis (1986)

 showed that cycles are extremely common especially

 when the probability of pair wise competition leading to

 competitive exclusion is high. Alternatively, Law and

 Morton (1996) observed no cyclic endings when ran-

 domly assembling communities from source pools con-

 sisting of 5 to 15 basal species and 20 to 60 consumers

 with relatively low efficiencies of conversion of prey to

 predators. However, often end states consisted of "cur-

 iously fragile" communities that can not be rebuilt

 sequentially from their constituent species.
 In this article, we investigate the linkages between

 "curiously fragile" communities and cycling with a

 simple model. Motivated by Kirlinger's study (1989) on

 cycling in linked predator-prey systems, we extend a

 model of Holt et al. (1994) to include a resource, two

 consumer species, and two predator species. For this
 model, we determine under what conditions cycling

 between predator-prey sub-systems occurs and under

 what conditions these cycles are dynamically unstable.

 We proceed to illustrate that while at slow invasion rates
 (e.g. sequential assembly) assembly can cycle indefinitely,
 faster invasion rates result in transient cycling culminat-

 ing in the coexistence of all species. We conclude by
 examining how the length of these transients vary as a

 function of invasion rates and habitat productivity.

 The model

 Consider a system consisting of an abiotic resource R,
 two prey species with densities N1 and N2 that consume

 the resource, and two predator species with densities PI
 and P2. The assumptions underlying this model are the
 same as made by Holt et al. (1994). Namely, the system
 is closed and that the total amount of resource, summed

 over all available forms including nutrient bound in
 organisms (both predator and prey), is fixed at S.
 Predator i's per-capita rate of increase is determined by

 a linear functional response, with attack rates aij and
 conversion efficiency bij for prey j, minus density-
 independent mortality rate mj. Prey i's per-capita rate
 of increase is given by a linear uptake of nutrient (with

 affinities cxi and yield coefficients ri), minus a density
 independent mortality rate pi and losses to predation.
 Under these assumptions, the dynamics of the predators,
 the prey, and the resource are given by

 P1 = P,(allb1lN1 + a2Ib2,N2 -MI)
 P2 = P2(al2bl2N, + a22b22N2 - M2)

 N1 =N,(1xf PIR-p g-ajPI -a12P2) where = d (1)
 dt

 N2 = N2(OC2P2R - 12- a21P1 - a22P2)

 with the mass balance constraint (MBC)

 R - N1 N2 PI P2 (2)
 P1 P2 r1 r2

 Since the parameters Pi determine the number of prey
 produced per unit of consumed resource, the inverse of

 this quantity is the amount of resource produced per

 unit of dead prey. In a similar manner, the parameters 1/

 ri determine the amount of resource produced per unit of
 dead predator.

 The analysis

 Assembly with simple dominance rules

 When two species engage in exploitative competition for

 a single resource, the species that depresses the resource

 to the lower equilibrium density displaces all other

 species (Hsu et al. 1978, Tilman 1990). Let R* denote
 the resource equilibrium density when prey i is the only

 species in the system. For the remainder of this article,

 we assume that R* < R*. In other words, prey 2 never
 dominates in resource exploitation. A similar rule also

 applies to the predator when they compete for a single

 prey (Wolkowicz 1989, Grover 1994). Let N1* with ij =
 1,2 denote the prey equilibrium density when only prey i

 and predator j are in the system. If both predators

 compete for prey i, then the predator that suppresses the

 prey to the lower equilibrium density dominates. We

 assume that N*l < N** and N** < N** (i.e. predator i is
 dominant with respect to prey i for i = 1,2).

 Holt et al. (1994) analyzed (1) when there is a single

 predator species. Assume predator j with j = 1 or 2 is the

 only predator in the system. Holt et al. reduced the
 analysis of this four dimensional system to an analysis in
 the resource-predator j plane. In this plane, the nullcline
 for prey i consists of resource and predator densities at

 which the prey has a zero per-capita growth rate (i.e.

 oai-iR - paijPj = 0). For resource and predator densi-
 ties above (respectively, below) this nullcline, prey i has a

 negative (resp. positive) per-capita growth rate. If prey i

 is at the equilibrium determined by predator j, the MBC
 equation Eq. 2 determines a line

 RS N*1* P.
 R =S- "J --

 Pi ri

 in the resource-predator j plane. The relative position of

 the MBC lines and prey nullclines determine whether a
 prey can invade an equilibrium determined by the
 remaining species. For instance, if the MBC line and

 nullcline for prey 1 intersect at a point above prey 2's
 nullcline, then prey 2 can not invade the equilibrium

 determined by predator 1 and prey 1 (Fig. la). The

 relative positions of MBC lines determine four possible

 outcomes: prey displacement, coexistence, or a priority
 effect. Prey displacement occurs in two ways. First, if the

 350 OIKOS 105:2 (2004)
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 Fig. 1. Prey nuliclines and mass balance constraint (MBC) lines in the resource-predator j plane. The dashed lines correspond to
 MBC lines, the solid lines correspond to prey nullclines, and the solid circles represent an equilibrium in which only one prey species
 is present. In (a) and (b) prey 1 dominates, (c) predator j reverses prey dominance.

 prey nullclines do not intersect (Fig. la) or the prey

 nullclines do intersect and both MBC lines cross the

 nullclines below the intersection point (Fig. lb), then the

 prey 1 displaces prey 2 (Fig. 3c with j = 2). Second, if the

 prey nullclines intersect and both MBC lines cross the

 nullclines above the intersection point (Fig. ic), then the

 predator reverses prey dominance (Fig. 3a with j = 1).

 The predator either mediates coexistence or creates a

 priority effect when one MBC line crosses below and one

 crosses above an intersection point of the prey nullcline.

 These latter possibilities do not occur when the system is

 sufficiently enriched (i.e. S is large) or the predator is

 effective at limiting its prey (i.e. larger values for aijbij) as
 increasing S shifts the MBC lines to the right without

 effecting the prey nullclines and increasing aijbij brings
 the MBC lines closer together.

 In the domain of the simple dominance rules (i.e. all

 three species sub-systems lead to displacement of one

 species), the addition of a single predator species results

 in four possible community assembly graphs (Fig. 2)

 whose vertices represent coexisting species and directed

 edges represent transitions from one community to

 another community due to single species invasions. If

 neither predator reverses prey dominance (i.e. Fig. la or

 lb applies for j = 1,2), then prey 1 always displaces prey

 2 resulting in the eventual displacement of predator 2 by

 predator 1 (Fig. 2a). If both predators reverse prey

 dominance (i.e. Fig. lc applies for j = 1,2), then com-

 munity assembly always leads to an end state consisting

 of prey 2 and predator 2 (Fig. 2b). If predator 2 reverses

 prey dominance (i.e. Fig. la or lb with j =2) but

 predator 1 does not (i.e. Fig. Ic with j = 1), there is a

 priority effect in which each predator i-prey i pair with

 i= 1,2 forms an uninvadable community (Fig. 2c). If

 predator 1 reverses prey dominance but predator 2 does

 not, then sequential invasions result in never ending

 cycling between the predator-prey sub-systems

 (Fig. 2d).

 {N1,P1} - { N2,P1} {N1,Pj} -*{N2,Pl}

 P1 { P2 P1 P2

 {N1,P2} - {N2,P2} {N1,P2} - {N2,P2}
 N1 N2

 (a) (b)

 {NP1} P -) {N 2,P1} {N1,P1} .{N2,Pl}

 P1 l |{P2 P1 P2

 {N1,P2} - { N2,P2} {N1,P2} e -{N2,P2}
 N2 N1

 (c) (d)
 Fig. 2. Community assembly graphs in which vertices represent
 predator-prey communities and edges represent transitions
 from one community to another due to single species invasions.
 In (a), neither predator reverses the exploitative dominance of
 prey 1. In (b), both predators reverse the dominance of the prey.
 In (c), predator 2 reverses prey dominance, but predator 1 does
 not. In (d), predator 1 reverses prey dominance, but predator 2
 does not. In all figures, predator i with i = 1,2 is competitively
 dominant with respect to prey i.

 Cycling occurs whenever the system is sufficiently

 enriched (i.e. S is sufficiently large) and the predators

 exhibit sufficiently strong preferences for different prey

 species (e.g. a1I > a2l, all > a12, a22 > al2 and a22 > a2l)
 due to differences in prey edibility (e.g. b1I > b12 and
 b22 > b2l) or defenses (e.g. b1I = b12 and b22 = b2l). The
 reason is as follows. When the predators exhibit suffi-

 ciently strong preferences for different prey species, the

 OIKOS 105:2 (2004) 351
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 (a) PI (b) p_ Fig. 3. Population phase space
 (i.e. the axes correspond to
 population densities) for all
 three species sub-systems when
 a cycle is present. Dashed and
 solid curves represent
 population trajectories, and

 N. N. solid circles represent
 equilibria. Starting from (a)
 and moving to (d), the four

 /1_o~ / / / / Adashed population trajectories
 and the associated equilibria
 determine the hetereoclinic
 cycle.
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 (c) P2 (d) PI

 7/_

 N2a P 2

 prey nullcines intersect in the resource-predator 1 plane

 (Fig. Ic with j = 1), but do not intersect in the resource-

 predator 2 plane (Fig. Ic with j = 2). Thus, when this

 system is sufficiently enriched, the MBC lines in the

 resource-predator 1 plane cross the prey nullclines

 above their point of intersection (Fig. Ic with j = 1)

 and predator 1 reverses prey dominance. However, as the

 prey nullclines do not intersect in the resource-predator

 2 plane, predator 2 does not reverse prey dominance.

 Attracting versus repelling cycles

 In reality the community assembly process is not

 sequential. Natural invasion rates vary between rare

 and frequent events. While the slightest deviation from

 extremely rare invasions (i.e. sequential invasions) does

 not effect the long-term assembly process in systems

 without cycles, it is not obvious how such deviations

 affect systems with cycles.

 In past two decades, there have been mathematical

 developments that permit us to understand the dynami-

 cal behavior of cycles (Hofbauer 1981, 1994, Kirlinger

 1989, Krupa 1997). In the mathematical literature, cycles

 are known as heteroclinic cycles: stable equilibria for the
 predator-prey sub-systems are connected in a cyclic way

 by population trajectories corresponding to invasions by

 missing species. These connecting trajectories in each of

 the three species sub-systems of (1) are illustrated as

 dashed curves in Fig. 3. A simplified representation of

 this heteroclinic cycle is a square whose vertices repre-

 sent predator-prey equilibria and whose directed edges

 represent the connecting trajectories (the boundary of

 Fig. 4a). A basic question about such cycles is whether

 they are attracting (resp. stable) or repelling (resp.

 unstable). If the cycle is repelling, then population

 trajectories supporting all four species and starting

 near the cycle move away from the cycle (4a, c). In fact

 when the cycle is repelling, the four species system is

 permanent: if all species are present initially, then their

 densities remain uniformly bounded away from extinc-

 tion for all time. Alternatively, if the cycle is attracting,

 then population trajectories supporting all four species

 and starting near the cycle approach the cycle asympto-

 tically (Fig. 4b, d). In this case, the population trajectory

 spends long periods of time near each of the predator-

 prey equilibria followed by quick transitions between

 these equilibria. After each transition, the population

 trajectory moves closer and closer to the heteroclinic

 cycle. Since every point on the heteroclinic cycle only

 supports three species, eventually a predator-prey pair

 reaches such a low density that demographic stochasti-

 city would drive a species to extinction.

 While there exist a variety of other methods (Brannath
 1994, Krupa and Melbourne 1995), we illustrate how

 average Lyapunov functions (Hofbauer 1981, 1994)

 352 OIKOS 105:2 (2004)
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 Fig. 4. The left hand figures correspond to repelling cycles and the right hand side correspond to attracting cycles. Figure (a) and
 (b) are caricatures of the actual dynamics with solid circles representing predator-prey equilibria and directed curves representing
 population trajectories. Figure (c) and (d) correspond to numerical simulations of (1) when there are attracting and repelling cycles.
 Predator and prey densities as functions of time are represented as dashed and solid curves, respectively. In (c), all four species move
 away from extinction while in (d) predator-prey pairs exhibit oscillations that ultimately lead to the extinction of one predator-prey
 pair.

 L(NI, N2, PI, P2) = Nh1 Nh2 Ph3 ph4 1 2 12

 for some choice of hi > 0

 can be used to determine whether a heteroclinic cycle is
 attracting or repelling. The derivative of L with respect
 time is given by

 4

 L=LEhi fi (3)
 i=r

 where the fi are per-capita growth rates

 f N1 f N2 f PI_____
 N1 N2 P1 P2

 If there exist hi > 0 such that L > 0 at all four of the
 predator-prey equilibria, then the heteroclinic cycle is
 repelling. This can be explained intuitively as follows. A
 population trajectory supporting all four species starting
 near the heteroclinic cycle initially spends most of its
 time near the predator-prey equilibria. Consequently, if
 L > 0 at these equilibria, L is on average increasing and
 the population trajectory moves further away from
 extinction. Alternatively, if there exist hi > 0 such that
 L < 0 at all predator-prey equilibria, then L is on
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 average decreasing for a population trajectory initiated

 near the heteroclinic cycle and the population trajectory
 moves closer to the heteroclinic cycle.

 Equation 3 and our discussion implies that if there

 exists hi > 0 such that 4= hifi > 0 at all of the predator-
 prey equilibria, then the heteroclinic cycle is repelling. By
 the definition of an equilibrium, the per-capita growth
 rate of any species supported by the equilibrium is zero.

 Conse Vuently, at each predator-prey equilibrium, the
 sum Zi= hifi has exactly two non-zero terms. One of
 these terms corresponds to the negative per-capita
 growth rate (NGR) of the species that can not invade

 the predator-prey equilibrium and the other term

 corresponds to the positive per-capita growth rate
 (PGR) of the species that can invade. For instance, at

 the predator 1-prey 1 equilibrium, f2 is the PGR (Fig.
 3a) and f4 is the NGR (Fig. 3d). Solving the four

 inequalities 4= hifi > 0 at all the predator-prey equili-
 bria via back substitution reveals that there exists the

 desired choice of hi > 0 if and only if the product of the
 four PGRs is greater than the product of the four NGRs.

 A similar round of reasoning shows that the heteroclinic

 cycle is attracting if the product of the four NGRs is
 greater than the product of the four PGRs.

 While in general understanding the products of the
 NGRs and the product of the PGRs is quite complex, it

 is possible to understand it reasonably well in two special
 cases: the prey and predators exhibit a strong symmetry
 or the system is highly enriched. We discuss these special
 cases below.

 Systems with symmetry

 Consider the case in which the two predators attack their

 prey in a similar manner (i.e. a 11 = a22 > a12 = a2l, b1l =
 b22= b2 = b2, mI = M2) and in which both prey con-
 sume the resource in the same manner (i.e. oiI = (X2, I, =
 P2, p1 = 92). Provided that the system is sufficiently
 enriched to support a positive equilibrium for each
 predator-prey pair, the system exhibits a cycle. More

 specifically, whenever both predators compete for prey i
 (i = 1,2), predator i who has the higher searching
 efficiency with respect to prey i displaces the other
 predator. Whenever predator i consumes both prey

 species, prey i which is the preferred prey for predator
 i is displaced via apparent competition. In the appendix
 we show that this cycle is always repelling.

 Highly enriched systems

 For highly enriched systems, a cycle occurs whenever the
 prey nullclines do not intersect in the resource-predator

 1 plane (Fig. la) and the prey nullclines do intersect in
 the resource-predator 2 plane (Fig. lc). For highly
 enriched systems with a cycle, the ratio of the product
 of the NGRs to the product of the PGRs is given by

 b12b21a12a21(a11r1 + c,131)(a22r2 + x2 f2)

 b,1b22a,,a22(a12r2 + oc, 3)(a21r1 + o22)

 When this expression is less than one, the cycle is

 repelling. When this expression is greater than one, the
 cycle is attracting. In the Appendix we show that the
 presence of a cycle implies

 al2a21(allrl + o1P1)(a22r2 + C2 02) <

 alla22(al2r2 + o1,1)(a21rl + C2 02)

 Thus, if b1 Ib22?bl2b2l (i.e. the predators convert
 their preferred prey at least as efficiently their less
 preferred prey), the cycle is repelling.

 Invasions rates and repelling cycles

 When a cycle is repelling, invasions rates can play an
 important role in the assembly process. To understand

 the effect of invasion rates, we numerically studied (1) for
 a set of parameters that correspond to a nearly
 symmetric system. In this numerical study, at discrete
 intervals of time of length T "days" species were chosen
 randomly (i.e. each of the four species was chosen with

 equal likelihood) and introduced at small densities (i.e. a
 density of 0.001). Each simulation was run for 50000

 "days". During each simulation, populations falling
 below the invasion density were presumed to go extinct
 and reset at zero. Fig. 5a and 5b illustrate how predator
 and prey densities varied over time in typical simula-
 tions. For each simulation, we recorded the first time at
 which all species densities remained 100 times above the
 invasion density for the remainder of the simulation. We
 view this as the assembly time for the community. For
 example, in Fig. 5a, the assembly time occurs a little
 after 500 "days", while in Fig. 5b community establish-
 ment never occurs during the 50000 "days". In this
 latter case, the assembly time is recorded as 50 000
 "days". To understand how time T between invasions
 and habitat productivity S influence the time to com-
 munity establishment, for each value of S and T we ran
 500 simulations. The means of these assembly times as a
 function of S and T are reported in Fig. 5c and 5d. These
 figures show that the mean assembly time increases as
 the time between invasion increases. This increase is
 initially gradual and exhibits a sharp jump around T =
 325 days. This sharp jump corresponds to the fact that
 for these large T values, the community fails to assemble
 by the end of the simulation. Alternatively, Fig. 5d shows
 that productivity has the largest affect on assembly times
 at the extremes. For a large interval of intermediate S
 values, the mean assembly time is approximately 2000
 "days".

 354 OIKOS 105:2 (2004)
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 Fig. 5. Random assembly runs 7
 for communities with repelling 6 6

 cycles. At discrete intervals of 5 5
 time of length T, species are ---
 randomly chosen and .4 4

 introduced at low densities. 3 3
 Sample simulations tre
 corresponding to T = 50 and 2
 T = 350 are shown in (a) and1
 (b), respectively, where prey
 and predator densities as 0 500 1000 1500 2000 2500 3000 0 10000 20000 30000 40000 50000
 functions of time are (a) Time (b) Time
 represented as solid and dashed
 curves, respectively. In (c) and
 (d), the mean assembly times of 50 100 150 200 250 300 350 100 200 300 400 500
 the simulations are plotted as 500003000
 function of the time T between 40000/
 introductions and the total X 02500
 amount S of resource in the 30000
 system. 120 2000

 20000

 10000 J 1500

 50 100 150 200 250 300 350 100 200 300 400 500
 (C) T (d)s

 Discussion

 While sequential assembly of a community exhibiting

 exclusively exploitative competition or apparent compe-

 tition does not cycle indefinitely between sub-

 communities (Hsu et al. 1978, Wolkowicz 1989, Grover

 1994, Holt and Lawton 1994, Holt et al. 1994), we have

 shown that sequential assembly of a community combin-

 ing exploitative and apparent competition can. More

 specifically, for a community consisting of two prey

 species exploiting a resource and being exploited by two

 predator species, cycling occurs whenever two conditions

 are met. First, each predator has a preferred prey species

 that it can suppress to a lower equilibrium density than

 the other predator. Second, in the presence of each

 predator, the predator's preferred prey is excluded via

 exploitative or apparent competition. When these as-

 sumptions are met, alternating invasions of predators

 and prey lead to cycling between predator-prey sub-

 communities in which prey and predators are displaced

 via apparent and exploitative competition. These criteria

 are met whenever the system is sufficiently enriched and

 the predators exhibit sufficient preferences for different

 prey species due to differences in prey edibility or prey

 defenses.

 We have proven that cycles in the aforementioned

 scenario are dynamically unstable and, consequently, the

 four species can coexist. If community assembly only

 occurs sequentially (i.e. single species invasions sepa-

 rated by very long intervals of time), then this commu-

 nity exhibits a "humpty dumpty" effect (Pimm 1991) in

 which a community of coexisting species can not be

 assembled by sequential invasions of its constituency.

 Law and Morton (1996) called such communities

 "curiously fragile" and in their simulation studies

 observed that 40% (i.e. 8 out 20 of the entries in their

 Table 3) of the assembly end points were curiously

 fragile. In fact, one of Law and Morton's end points is

 very similar to our system; "comprising of two basal

 species and two consumer species... [,t]his community

 lacks a three species subcommunity with an equilibrium

 point so there is no attractor with three species, and no

 way of getting from a two-species subcommunity to the

 full community by sequential invasions." We conjecture

 that many of these curiously fragile communities are the

 byproduct of dynamically unstable cycles.

 Sequential assembly corresponds to the extreme of an

 "infinitesimal" invasion rate that ensures the system

 settles down to a limiting dynamical state prior to the

 invasion of the next species (Post and Pimm 1983, Drake

 1990, 1991, Law and Blackford 1992, Law and Morton

 1993, 1996, Morton et al. 1996). However, in nature

 invasion rates vary reflecting how often and how easily

 individuals are released as propagules by neighboring

 species (Lockwood et al. 1997). When cycles exist and

 are dynamically unstable, we found that there is a critical

 invasion rate below which the community cycles indefi-

 nitely and above which the community reaches an end

 state after some transient cycling. The existence of this

 critical invasion rate implies that the humpty-dumpty

 effect is sensitive to invasion rates (i.e. if all the king's

 horses and all the king's men worked sufficiently fast,

 they could have put humpty back together again). We

 also found that the length of the transient cycling
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 decreases with invasion rates and increases initially

 gradually and then sharply with productivity. Hence,
 community assembly dynamics may partially explain the

 unimodel relationship between species richness and

 productivity (Ricklefs and Schulter 1993). More pre-

 cisely, at low productivity there are insufficient resources

 to support many species and at high productivity

 community assembly becomes more difficult.

 Acknowledgements - The authors thank Gary Huxel for
 positive feedback about earlier versions of this manuscript.
 This work was supported in part by the National Science
 Foundation.
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 Appendix

 In this appendix, we derive the conclusions about the

 ratio of NGRs to PGRs as stated in the text. To

 determine the NGRs and PGRs, we begin by noting
 that the equilibrium supporting prey i and predator j
 with ij = 1,2 is given by

 N**= mi

 aijbij-rjSai ,Birci --aij bijmr - H

 -J ~ajib,(ajr, + oipi)

 At this equilibrium, prey i and predator j have a zero
 per-capita growth rate. The per-capita growth rate of the
 missing predator k = j is given by

 aikbikN** - Mk blk m k (4)
 aijbbi

 and the per-capita growth rate of the missing prey 1 : i is
 given by

 OCIj3j(S - N* /-Pj - */rj) - p - ajP* (5)
 Systems with symmetry

 Assume that a = a,1 = a22, b = b11 = b22 = b12 = b2b
 K =a12 =a21, t = 1= =2, = =2, =P = P2, and
 m = m1 = i2. Assume that a > K. This choice of coeffi-
 cients ensures that there is cycling whenever S is
 sufficiently large to support all predator-prey pairs.
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 The per-capita growth rates for the missing prey and

 missing predator at the prey I-predator i equilibrium
 i= 1,2 are given by

 (a - K)r(ab(Sa - ) - ma) a Kn

 ab(ar + o3)n a I

 respectively. Alternatively, the per-capita growth rates for

 the missing prey and missing predator at the prey

 i-predator j equilibrium i 0 j are given by

 (a - K)r(ma + bK(H - Sap)) n K '\

 bK(Kr + aan a m

 respectively. Using these expressions and simplifying, the

 ratio of the product of the four NGRs to the product of
 the four PGRs becomes

 (ar + oc3)2(ma + bK(I -Sa))2 (6)
 (Kr + a p)2(ma + ab( - Scp))2(

 To show that this quantity is always strictly less than
 one, we will show that (6) is an increasing function of S
 and that value of (6) as S approaches so is strictly less
 than one. Taking the derivative of (6) with respect to S,
 we get

 2b(a - K)ma2 P(ar + C43)2(bK(Sa4 - p - mo)

 (Kr + a43)2(ab(SaB - g) -mo

 We claim that (7) is positive. Since a > K, it suffices to

 show that bK(Sac - ,u) - mot > 0, and ab(Sa4 - i) -
 ma>0. Since the equilibrium value of predator 1 in

 the predator 1-prey 1 sub-system is given by

 r~ab(Sap -t) - moc
 V ar + ad)

 and assumed to be positive, we get that the numerator
 ab(Sa3 - ,) - ma must be positive. Since the equili-
 brium value of predator 1 in the predator 1-prey 2 sub-
 system is given by

 r(bK(Sap _) - mac
 bK(Kr + ad)N

 and is assumed to be positive, we get that the numerator

 bK(Sa13 - p) - mo must be positive. Therefore, (7) is
 positive. Taking the limit of S to oc in (6) gives

 K2(ar + (Xp)2

 a2(Kr + (Xp)2

 Rewriting this expression as

 (r + Ad/a)2
 (r + aI/K)2

 and recalling that a > K implies that the limit of (6) as
 S -* o is strictly less than one. Thus, we have shown
 that (6) is always less than one. Equivalently, the product
 of the PGRs is greater than the product of NGRs.

 Highly enriched systems

 From Eq. 4, we get that the per-capita growth rate of
 predator 2 at the prey 2-predator 1 equilibrium and the
 per-capita growth rate of predator 1 at the prey
 1-predator 2 equilibrium are given by

 a22b22mI m2 (8)
 a2l b2l

 allbl1m2 m (9)
 a12b12

 Alternatively, Eq. 5 implies that the per-capita growth
 rates of prey 2 at the prey 1-predator 1 equilibrium
 and prey 1 at the prey 2-predator 2 equilibrium are
 given by

 r, S(a1 Ix22 02- a2l al 1l1) (10)
 al r1 + ?c1131 --

 r2S(a22oCI 1 - a12oC202)
 - -a ~+ C2(1)

 a22r2 + OC2 02

 where C1 and C2 are constants that are independent of S.
 Consequently, whenever S is sufficiently large, alloc202 #
 a2l cZ131, and a22(X IPi =# a120c2f32, the signs of these per-
 capita growth rates can be determined by ignoring these
 constants C1 and C2. To get a cycle, we need that all four
 of these per-capita growth rates are positive. Equations 8
 and 9 are positive if and only if

 -____ m> (12)
 a2 b2I a22b22

 and

 m2 mlI __ > (13)
 al2b12 a11b11

 These inequalities merely state the R* rules for exploi-
 tative competition between the predators; ml/(ai1bil) and
 m2/(ai2bi2) with i = 1,2 are the equilibrium densities of
 prey i when consumed exclusively by predator 1 and 2,
 respectively. Equations 10 and 11 are positive if and only
 if

 1202 ( PI

 a21 a,1

 and

 a12 a22

 These inequalities imply that

 (r + ac PI r2+ <C (4
 al1 a22 <(14)

 (, r1?2 r2?+oiP
 a21 a12,
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 Alternatively, the ratio of the product of NGRs to the

 product of PGRs as St T can be shown using MAPLE
 to equal

 (r, + al r2 + 22
 bl2b2l a,1 a22 /
 bllb22 (r + OC2 2) (r + IIPi

 a2l a12

 Thus, Eq. 14 implies if b1lb22 ? b12b2l, then the product
 of the NGRs is less than the product of the PGRs and

 the cycle is repelling.

 358 OIKOS 105:2 (2004)

This content downloaded from 198.30.200.64 on Wed, 15 Dec 2021 16:18:09 UTC
All use subject to https://about.jstor.org/terms


	Contents
	p. 349
	p. 350
	p. 351
	p. 352
	p. 353
	p. 354
	p. 355
	p. 356
	p. 357
	p. 358

	Issue Table of Contents
	Oikos, Vol. 105, No. 2 (May, 2004) pp. 209-446
	Front Matter [pp. ]
	Trophic Structure in a Large Assemblage of Phyllostomid Bats in Panama [pp. 209-220]
	Importance of Silene latifolia ssp. alba and S. dioica (Caryophyllaceae) as Host Plants of the Parasitic Pollinator Hadena bicruris (Lepidoptera, Noctuidae) [pp. 221-228]
	Are Invasive Plant Species Better Competitors Than Native Plant Species?: Evidence from Pair-Wise Experiments [pp. 229-238]
	Physiological and Reproductive Differences between Hermaphrodites and Males in the Androdioecious Plant Fraxinus ornus [pp. 239-246]
	Sexual Size Dimorphism in Northern Giant Petrels: Ecological Correlates and Scaling [pp. 247-254]
	Are Long Penis Bones an Adaption to High Latitude Snowy Environments? [pp. 255-267]
	Slugs, Willow Seedlings and Nutrient Fertilization: Intrinsic Vigor Inversely Affects Palatability [pp. 268-278]
	Making Eggs from Nectar: The Role of Life History and Dietary Carbon Turnover in Butterfly Reproductive Resource Allocation [pp. 279-291]
	Estimating the Richness of Species with Variable Mobility [pp. 292-300]
	Selection for Synchronous Breeding in the European Starling [pp. 301-311]
	Predator-Induced Changes in Population Structure and Individual Quality of Microtus Voles: A Large-Scale Field Experiment [pp. 312-324]
	Seeds Redistribution in Sand Dunes: A Basis for Coexistence of Two Rodent Species [pp. 325-335]
	Patch Dynamics in a Landscape Modified by Ecosystem Engineers [pp. 336-348]
	From Simple Rules to Cycling in Community Assembly [pp. 349-358]
	Species Richness of Moss Landscapes Unaffected by Short-Term Fragmentation [pp. 359-367]
	The Significance of Bottom-Up Effects for Host Plant Specialization in Chrysomela Leaf Beetles [pp. 368-376]
	Dual Role of Harvesting Ants as Seed Predators and Dispersers of a Non-Myrmechorous Mediterranean Perennial Herb [pp. 377-385]
	Reindeer Influence on Ecosystem Processes in the Tundra [pp. 386-396]
	The Effects of Artificial and Natural Barriers on the Movement of Small Mammals in Banff National Park, Canada [pp. 397-407]
	Identification of Suitable Unoccupied Habitats in Metapopulation Studies Using Co-Occurrence of Species [pp. 408-414]
	Modeling the Distribution and Abundance of the Non-Native Parasite, Canine Heartworm, in California Coyotes [pp. 415-425]
	Diversity and Community Composition of Butterflies and Odonates in an ENSO-Induced Fire Affected Habitat Mosaic: A Case Study from East Kalimantan, Indonesia [pp. 426-446]
	Back Matter [pp. ]



