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1  | INTRODUC TION

Recruitment corresponds to the addition of juveniles to a population 
through either local births or immigration events. When recruitment 
mainly occurs through local births, the population is closed, else it is 

open. At smaller spatial scales, which are often the scales at which 
empirical studies are conducted, open populations are common. 
This is especially common in species which only disperse during one 
life stage, such as plants with seed dispersal, insects with aerial dis-
persal and marine organisms with larval dispersal (Hixon, Pacala, & 
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Abstract
1. At the spatial scale relevant to many field studies and management policies, popu-

lations may experience more external recruitment than internal recruitment. 
These sources of recruitment, as well as local demography, are often subject to 
stochastic fluctuations in environmental conditions. Here, we introduce a class of 
stochastic models accounting for these complexities, provide analytic methods 
for understanding their long-term behaviour and illustrate the application of 
methods to two marine populations.

2. The population state n(x) of these stochastic models is a function or vector keeping 
track of densities of individuals with continuous (e.g. size) or discrete (e.g. age) 
traits x taking values in a compact metric space. This state variable is updated by 
a stochastic affine equation nt+1 = At+1nt + bt+1 where is At+1 is a time varying op-
erator (e.g. an integral operator or a matrix) that updates the local demography 
and bt+1 is a time varying function or vector representing external recruitment.

3. When the realized per-capita growth rate of the local demography is negative, we 
show that all initial conditions converge to the same time-varying trajectory. 
Furthermore,	when	A1,A2,… and b1,b2,… are stationary sequences, this limiting 
behaviour is determined by a unique stationary distribution.

4. When the stationary sequences are periodic, uncorrelated or a mixture of these 
two types of stationarity, we derive explicit formulas for the mean, within-year 
covariance and autocovariance of the stationary distribution. Sensitivity formulas 
for these statistical features are also given.

5. The analytic methods are illustrated with applications to discrete size-structured 
models of space-limited coral populations and continuously size-structured mod-
els of giant clam populations.
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Sandin, 2002). The simplest model of open populations are affine 
models, nt+1 = Ant + b, where nt is the population state at time t (e.g. 
a vector of population densities), A describes the local demographic 
processes (e.g. a matrix accounting for survival, growth, reproduc-
tion and emigration) and b describes external recruitment (Caswell, 
2008; Pascual & Caswell, 1991; Roughgarden, Iwasa, & Baxter, 
1985). If this population relies on external recruitment to persist (i.e. 
the dominant eigenvalue λ of A is <1), the population approaches a 
steady state n̂ = (Id−A)−1b that depends on the interactive effects 
of external recruitment and local demography. This reliance on ex-
ternal recruitment may be due to a population living in a sink habitat 
where death rates exceed birth rates (Dias, 1996; Pulliam, 1988) or 
may be due to most newly born individuals emigrating. In either case, 
models of this form have been used successfully to understand the 
dynamics of open sessile populations with space limited recruitment 
(Pascual & Caswell, 1991; Roughgarden et al., 1985; Svensson et al., 
2004), age-structured reef fish populations (Armsworth, 2002), and 
coral and clam populations with continuous size structure (Madin, 
Hughes, & Connolly, 2012; Yau, Lenihan, & Kendall, 2014).

Open populations often experience environmentally driven fluc-
tuations in external recruitment. If these fluctuations are serially 
uncorrelated and the population state is finite-dimensional (i.e. nt is 
a vector of densities), then one can models these populations by a 
first-order multivariate autoregressive, MAR(1), model: nt+1 = Ant + bt 
(Bartlett, 1978; Cooper, Spencer, & Bruno, 2015; Gross & Edmunds, 
2015; Ives, Dennis, Cottingham, & Carpenter, 2003; Reinsel, 
2003).	 For	 these	models,	 there	 is	 a	 unique	 stationary	 distribution	
provided that λ < 1, and explicit formulas for the mean and covari-
ance matrix of this stationary distribution are well-known (Bartlett, 
1978; Ives et al., 2003; Reinsel, 2003). More recently, Gross and 
Edmunds (2015) developed sensitivity formulas for these means and 
covariances.

These MAR(1) models, however, do not account for fluctuations 
in local demography (i.e. A is time dependent), continuous popu-
lation structure (e.g. size) or temporally correlated demographic 
fluctuations, although the importance of these population features 
is	 recognized.	 For	 example,	 Yau	 et	al.	 (2014)	 used	 a	 continuous	
size-structured IPM to investigate how the degree of self-recruit-
ment (used as a metric for the openness of the population) influ-
enced management priorities of a giant clam fishery. Additionally, 
a series of matrix models was developed to account for space-lim-
ited recruitment in barnacle (Hyder, Aberg, Johnson, & Hawkins, 
2001; Roughgarden et al., 1985) and coral (Pascual & Caswell, 1991) 
populations. As a result of how space-limited recruitment was in-
corporated into the model structure, the amount of settlement in-
fluenced both b and A. These models were extended by Svensson 
et al. (2004); Svensson, Jenkins, Hawkins and Åberg (2005) to in-
vestigate the relative importance of variability in recruitment, local 
survival and migration. The models also accounted for correlated 
fluctuations in demography, through the use of randomly selected 
winter/summer periodic transition matrices. However, no ana-
lytic methods have been developed that account for these three  
biological features.

To address these fundamental biological complexities, we de-
velop results for analysing open population models accounting for (1) 
stationary and non-stationary fluctuations in local demography and 
recruitment, and (2) any mixture of continuous and discrete popula-
tion structure. Our results include conditions ensuring convergence 
of the processes for stationary and non-stationary environments, 
formulas for mean and covariance structure of the stationary  
distributions of the processes for any mixture of periodic and se-
rially uncorrelated fluctuations, and sensitivity formulas for these  
statistical features.

To highlight the broad applicability of our results, we apply them 
to a discrete size-structured model of space-limited coral popula-
tions (building off of the model of Pascual and Caswell (1991)), as 
well as a continuously size-structured model of giant clam popula-
tions (building off of the model of Yau et al. (2014)). Specifically, we 
demonstrate the use of our results to investigate the impact of the 
frequency of high recruitment years on the stationary distribution, 
the size-specific mean density and SD of the mean density and the 
correlation and autocorrelation structure across sizes. We also in-
vestigate the impact of the density of recruits during high and low 
recruitment years, as well as the degree of local retention, on these 
population	properties.	Finally,	we	assess	 the	size-specific	 sensitiv-
ity and elasticity of the mean density and SD of the mean density 
to the probability of a high recruitment year and the density of re-
cruits during a high recruitment year. In marine populations espe-
cially, these questions are of particular importance as recruitment 
is influenced by a wide range of potentially stochastic events (e.g. 
climate, physical processes, local demography and biological traits, 
etc.; Cowen and Sponaugle (2009)). Additionally, many of these pop-
ulations are of conservation or economic interest, and so develop-
ing a framework to understand the interaction between stochastic 
events and population properties is essential.

2  | MODEL S

Let 	be	the	set	of	individual	states	for	the	population	of	interest.	For	
example, for a stage-structured matrix model  = {1,2,… ,k} where 
states may correspond to a finite number of stages, ages or spatial 
locations (Caswell, 2001). Alternatively, for the simplest integral pro-
jection models (IPMs) (Easterling, Ellner, & Dixon, 2000),  = [a,b] 
corresponding to the continuum of sizes of individuals from the 
smallest of size a to the largest of size b. More generally,  may cor-
respond	to	a	mixture	of	continuous	and	discrete	structure.	For	ex-
ample, for a size and age-structured population,  = [a,b]×{1,… ,k} 
where k is the maximal age of an individual (Ellner & Rees, 2006).  
A common feature of all these examples is that  is a compact metric 
space which we assume is the case for all the models discussed here.

To keep track of the densities of individuals, we have func-
tions n:→ [0,∞) where n(x) is the “density” of individuals in state 
x. In general, we assume the functions n are continuous functions, 
but more general classes of functions are allowed as discussed 
the Appendices. Let nt(x) denote the density of state x at time t.  
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To project the density function nt forward in time, we have contri-
butions due to individuals in the population and contributions from 
outside of the population. To describe the endogenous contribu-
tions, let At+1 be a linear operator taking non-negative, continuous 
functions to non-negative, continuous functions. To describe the 
exogenous contributions, let bt+1(x) be the density of individuals in 
state x entering the population externally at time t + 1. Then, the 
population model becomes

For	a	matrix	model,	At+1 is a k×k non-negative matrix, bt+1 is a 
non-negative vector and At+1nt + bt+1 corresponds to the usual matrix 
multiplication	and	vector	addition.	For	the	standard	size-structured	
IPM, At+1 is an integral operator of the form

where kt+1(y,x) is a non-negative kernel describing the contribution 
of individuals of size y to individuals of size x at time t + 1 and bt+1 is 
a continuous function from [a,b]	to	[0,∞].

Given a population density function n, let ║n║ be a norm corre-
sponding	to	the	total	size	of	the	population.	For	a	matrix	model,	this	
norm is ‖n‖ =

∑
x
n(x).	For	the	standard	IPM,	two	choices	of	this	norm	

are the L1 norm ‖n‖ = ∫ b
a
n(x)dx or the sup norm ‖n‖ = supx∈ n(x). 

These norms on n also induces an operator norm on the operators 
At given by

In the case of the L1 norm, this operator norm corresponds to the 
largest population size that can be achieved at time t for a population 
of size one at time t − 1	(i.e.	║nt−1║ = 1).

3  | RESULTS:  GENER AL THEORY

We	introduce	three	types	of	results.	First,	we	present	results	for	
when the model converges to a time varying solution that is in-
dependent of initial conditions. Our condition for convergence 
applies	to	non-stationary	as	well	as	stationary	environments.	For	
stationary environments, this convergence is to a unique station-
ary distribution. Second, to understand the nature of these sta-
tionary distributions, we examine three special cases: periodic 
environments, temporally uncorrelated environments and un-
correlated	 fluctuations	 around	 a	 periodic	 environment.	 Finally,	
we derive sensitivity formulas for properties of the asymptotic  
behaviour in the three special cases.

3.1 | Convergence

Under mild assumptions, we introduce a natural condition that ensures 
the solutions of (1) converge to a time varying solution which is inde-
pendent of the initial state of the system. The proof for this assertion 

follows from an argument of Brandt (1986) who studied a one-dimen-
sional version of (1) in uncorrelated environments. Iterating the model 
(1) forward from time 0 to time t yields the solution:

Importantly, only the first term depends on the initial state n0 of the 
population.

When this first term in (2) vanishes exponentially fast, we might 
expect that nt converges to a time varying solution which is indepen-
dent of the initial condition. To make this statement precise, define 
the realized per-capita growth rate of the population as

This term measures the maximal long-term per-capita growth 
rate of the population in the absence of immigration, that is bt = 0 
for all t. If r(At) < 0, then the population tends exponentially toward 
extinction in the absence of immigration. Namely, the population 
is a sink population. If r(At) > 0, then the population asymptotically  
increases at an exponential rate r(At) and is a source population.

For	source	populations,	key	properties	of	long-term	dynamics,	such	
as the long-term population growth rate, stable-state distribution and 
reproductive values, are determined by the “immigration-free” dynam-
ics nt+1 = At+1nt for which classical results in stochastic demography 
apply (Tuljapurkar, 1990). Hence, our results focus on the case of sink 
populations and we assume that r(At)	<	0.	Furthermore,	we	assume	that	
supt ‖bt‖ < ∞. Under these assumptions, we show in Appendix S1 that 
all population trajectories converge exponentially fast toward one an-
other. That is, given two population trajectories nt and ñt corresponding 
to initial conditions n0 and ñ0,

In particular, all population trajectories asymptotically approach 
the trajectory corresponding to the zero initial condition n0 = 0:

From	a	computational	point	of	view,	this	result	implies	that	it	suf-
fices to run the model once for any initial condition to understand its 
long-term behaviour.

3.2 | Stationary environments

Assume that A1,A2,A3,… are a stationary and ergodic sequence of 
non-negative operators, and �[max{log ‖At‖,0}] < ∞. Kingman 
(1973)'s subadditive ergodic theorem implies there exists an r (pos-
sibly	−∞)	such	that

(1)nt+1=At+1nt+bt+1.

(At+1nt)(x)=∫
b

a

kt+1(y,x)nt(y)dy+bt+1(x)

‖At‖= sup
‖n‖=1

‖Atn‖.

(2)

nt=AtAt−1 …A1n0
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

=
�∏1

i=t
Ai

�
n0

+AtAt−1 …A2b1+AtAt−1 …A3b2+⋯+Atbt−1+bt
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=bt+
∑t

τ=2(
∏τ

i=t
Ai)bτ−1

r(At):= lim sup
t→∞

1

t
log ‖AtAt−1 …A1‖.

(3)lim sup
t→∞

1

t
log ‖nt− ñt‖≤ r(At)

nt=bt+

t∑
τ=2

(
τ∏
i=t

Ai

)
bτ−1.

lim
t→∞

1

t
log ‖AtAt−1 …A1‖= r
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with probability one. In particular, the realized per-capita growth rate 
r(At) equals r with probability one. This realized per-capita growth 
rate r corresponds to what Tuljapurkar (1990) calls the stochastic 
growth rate  log λS of the population in the absence of immigration. 
In the mathematical literature, this common r value is known as the 
dominant Lyapunov exponent of the random sequence of operators 
(Ruelle, 1982).

If r < 0, then equation 3 implies that with probability one trajec-
tories experiencing the same sequences of environmental conditions 
At and bt but possibly different initial conditions converge to one an-
other	exponentially	fast.	Furthermore,	from	the	ensemble	perspec-
tive, we show in Appendix S2 that nt converges exponentially fast 
to a unique stationary distribution provided that �[ log ‖bt‖] < ∞. To 
define this stationary distribution, a standard probabilistic construc-
tion allows one to uniquely extend At and bt to the past (i.e. …,A−2, 
A−1,A0,A1,A1,… and …,b−2,b−1,b0,b1,b2,…) such that they are station-
ary and ergodic. Then, the unique stationary distribution is given by

In the case of environments that are uncorrelated (i.e. inde-
pendent and identically distributed), periodic or a mixture of these 
types, we can say more about the stationary distribution.

3.2.1 | Uncorrelated environments

Assume that A1,A2,… is an independent and identically distributed 
sequence of non-negative operators, and b1,b2,… is an independ-
ent and identically distributed sequence of density functions. In this 
case, we can write down an explicit, easily computed expression for 
the first- and second-order moments of the stationary distribution. 
These expressions are extensions of well-know expressions when 
At = A are constant in time and finite-dimensional (Bartlett, 1978). 
To introduce these expressions, define λ to be the dominant eigen-
value of A := �[At] and r̄ = log λ̄. If r̄ < 0 and �[‖bt‖] < ∞, then

where b̄ = �[bt] and Id denotes the identity operator: Idn = n for all n. 
As r̄ > r, the existence of the stationary distribution is not sufficient 
to ensure that its mean is well-defined. In fact, when ̄r > 0 > r, �[‖n̂‖] 
is infinite. We illustrate this phenomena with a simple scalar model 
in the examples section.

To define the covariance of n̂ for the general form of the model, 
we use tensor products of functions and linear operators. We 
briefly present the main definitions and refer the interested reader 
to (Hackbusch, 2012) for more details about tensor products on in-
finite-dimensional spaces and how to numerically approximate these 
tensor products. If f and g are functions from the individual state 
space  to the real numbers (e.g. two measurements associated 
with the state of an individual), then the tensor product f ⊗ g of f 
and g is a function from  × to the real numbers that is defined by 
(f ⊗ g)(x,y) = f(x)g(x). When there are a finite number of individuals 

states  = {1,2,… ,k}, f ⊗ g can be represented by a matrix whose 
i–j-th entry equals (f ⊗ g)(i,j) = f(i)g( j). The covariance of n̂, denoted by 
Cov[n̂], is given by �[(�n− n̄)⊗ (�n− n̄)]. When there are finite number 
of individual states  = {1,2,… ,k}, Cov[n̂](i,j) is the i–j-th entry of the 
covariance matrix of n̂.

In Appendix S3, we show that the covariance is well-defined 
when the spectral radius of �[A1⊗A1] is <1. Here, A1 ⊗ A1 is the ten-
sor product of A1 with itself. This tensor product is characterized by 
its action on elementary tensors f ⊗ g where f and g are functions 
from  to the reals for which A1f and A1g are well defined. Namely, 
(A1 ⊗ A1)f ⊗ g = (A1f)⊗(A1g) (Hackbusch, 2012). When this spectral  
radius of �[A1⊗A1] is <1, it is invertible and

where Cov[K1n̄+b1] = �[(A1n̄+b1− n̄)⊗ (A1n̄+b1− n̄)] is the covari-
ance operator of the single year fluctuations away from the mean 
population state. This covariance operator can be calculated di-
rectly using the distributional information about A1 and b1 (see e.g. 
Appendix S5 for calculations when A1 and b1 are drawn randomly 
from a finite set of operators and vectors, respectively).

In the finite-dimensional case, we can compute this covari-
ance using the vec operation and the Kronecker product ⊗K which  
corresponds to the tensor product in finite dimensions. Recall, for a 
n × n matrix A, the vec operation vec(A) is a column vector of length 
n2 given by concatenating the columns of A.	 For	 a	 n×n matrix A  
and m×m matrix B, the Kronecker product A ⊗K B is the nm×nm block 
matrix given by

In terms of these matrix operations, the covariance matrix is 
given by (Appendix S3)

In the infinite-dimensional case, one can apply (6) to the finite-di-
mensional matrix approximations of At and bt.

Even if At and bt are uncorrelated in time, the population den-
sities nt typically will exhibit temporal correlations whenever there 
are overlapping generations. To characterize these temporal correla-
tions, the covariance between n̂t and n̂t+τ equals

For	τ	≥	1,	stationarity	and	independence	imply

In finite dimensions, we can compute this autocovariance with 
the following equation:

n̂t=bt+

∞∑
τ=1

(
t−τ+1∏
i=t

Ai

)
bt−τ.

(4)n:=�[�n]= (Id−A)−1b̄.

(5)Cov[�n]= (Id−�[A1⊗A1])
−1
Cov[A1n̄+b1].

A⊗K B=

⎛⎜⎜⎜⎜⎝

a11B a12B … a1nB

a21B a22B … a2nB

⋮ ⋮ … ⋮

an1B an2B … annB

⎞⎟⎟⎟⎟⎠
.

(6)vec(Cov[�n])= (Id−�[A⊗KA])
−1vec(Cov[A1n̄+b1]).

Covτ[�n]=�[(�nt− n̄)⊗ (�nt+τ − n̄)].

(7)Covτ[�n]=�

[
(�n0− n̄)⊗

(
1∏
i=τ

Ai(�n0−n)

)]
.

(8)Covτ[n̂]=Cov[n̂](A
T

)
τ



     |  1573Methods in Ecology and EvoluonSCHREIBER and MOORE

where T denotes the matrix transpose. As Cov[n̂] is only well defined 
when r̄<0, (8) implies that the covariance terms, when they exist, 
decay exponentially fast with the length of the time lag τ.

Now assume that At and bt depend on a parameter θ. Appendix 
S3 derives sensitivity formulas for the mean, the covariance and the 
autocovariance of the stationary distribution with respect to the pa-
rameter θ. The sensitivity of the mean n̄ of the stationary distribution 
n̂t is given by

This sensitivity formula is the same as what Caswell (2008) found 
for deterministic matrix models of the form n̄t+1 = An̄t+ b̄. The sensi-
tivity of Cov[n̂] to θ equals

In finite dimensions, we can compute these sensitivities with the 
vec and Kronecker product:

This finite-dimensional sensitivity formulas agrees with what 
Gross and Edmunds (2015) found for finite-dimensional MAR mod-
els where there is no variation in the At matrices, that is At = A for all 
t. In this special case, �[A1⊗KA1] = A⊗KA.	Finally,	the	sensitivity	of	
the autocovariance for the finite-dimensional models equals

For	 the	 infinite-dimensional	 models,	 we	 apply	 this	 formula	 to	
their finite-dimensional discretization.

3.2.2 | Periodic environments

Consider a periodic environment with period T. Then, At+T = At for 
all t. In the periodic environment, r(At) equals 1

T
log λ where λ is the 

dominant eigenvalue of the period T operator ATAT−1…A2A1. In par-
ticular, the condition r(At) < 0 corresponds to the dominant eigen-
value being <1. When this occurs, nt converges exponentially quickly 
to the periodic trajectory given by (Appendix S4)

Now let θ be a parameter in the model. The sensitivity of the periodic 
solution, n̂0,n̂1,… ,n̂T−1, to θ is given by (Appendix S4)

3.2.3 | Uncorrelated fluctuations around a periodic  
signal

Stochastic variation in seasonal fluctuations or decadal oscillations 
can be modelled by combining the elements from the previous two 
examples.	 For	 descriptive	 purposes,	 assume	 there	 are	 T “seasons” 
per year and t	counts	the	number	of	seasons	that	have	elapsed.	For	
each	season,	1	≤	i	≤	T, let Ai,0,Ai,1,Ai,2,… and bi,0,bi,1,bi,2,… be i.i.d. se-
quences.	For	any	 time,	 t, let y(t) = ⌈t/T⌉−1 correspond to the “year” 
and s(t) = t−y(t)T the “season.” Then, we can write down a model of the 
following type:

The periodic “deterministic skeleton” of this model is given by 
nt+1 = As(t+1)nt+ b̄s(t+1) where Ai = �[Ai,t] and b̄i = �[bi,t].

To understand the first two moments of the stationary distribu-
tion, we can look at the “yearly stroboscope” version of the model:

As A1,A2,… and b1,b2,… as defined above are i.i.d. sequences, the 
results for the i.i.d. environments can be applied here.

4  | APPLIC ATIONS

To illustrate the applicability of the general methods, we apply them 
to a model of an unstructured population, a matrix model of reef cor-
als (Hughes, 1984, Pascual & Caswell, 1991) and an integral projection 
model of giant clams (Yau et al., 2014). Schreiber and Moore (2018) 
provides the R code (R Core Team, 2016) for these examples and, 
more generally, code for implementing these methods to matrix and 
IPM models whose environmental dynamics are given by a finite state 
Markov chain.

4.1 | An unstructured, open population

The simplest stochastic, open model is for an unstructured popula-
tion and takes the form

where nt, at and bt are scalars. A continuous-time version of this 
model, for example, was used by Gonzalez and Holt (2002) to de-
scribe open, sink populations in a fluctuating environments. We as-
sume that at > 0 and bt > 0 are independent, identically distributed 
sequences. More specifically,  log at and  log bt are normally distrib-
uted with means μa, μb, variances σ2

a
, σ2

b
, and correlation ρ.

This model has a unique stationary distribution provided that 
r = �[ log at] = μa < 0	(Figure	1).	The	mean	of	this	stationary	distribu-
tion is finite if the arithmetic mean �[at] of at is <1. Namely,

(9)
∂n̄

∂θ
= (Id−A)−1

(
∂A

∂θ
n̄+

∂b̄

∂θ

)
.

(10)

∂Cov[�n]

∂θ
= (Id−�[A1⊗A1])

−1

(
∂�[A1⊗A1]

∂θ
Cov[�n]+

∂Cov[A1n̄+b1]

∂θ

)
.

vec

(
∂Cov[�n]

∂θ

)
= (Id−�[A1⊗KA1])

−1

(
∂�[A1⊗KA1]

∂θ
vec

(
Cov[�n]

)

+vec

(
∂Cov[A1n̄+b1]

∂θ

))
.

(11)∂Covτ[n̂]

∂θ
=

∂Cov[n̂]

∂θ
(A

T

)
τ +Cov[n̂]

τ−1∑
i=0

(A
T

)
τ−1−i ∂A

T

∂θ
(A

T

)
i
.

(12)

�n0= (Id− Ã)−1b̃ and

�nt=At
�nt−1+bt for 1≤ t≤T−1 where

Ã=
1∏
i=T

Ai and b̃= bT+
T∑

τ=2

�
τ∏
i=T

Ai

�
bτ−1

∂�n0
∂θ

= (Id− Ã)−1
(

∂Ã
∂θ

�n0+
∂b̃
∂θ

)

∂�nt
∂θ

=
∂At

∂θ
�nt−1+At

∂�nt−1
∂θ

+
∂bt
∂θ

for t=1,2,… ,T−1.

(13)nt+1=As(t+1),y(t+1)nt+bs(t+1),y(t+1).

(14)
nkT+T=

(
1∏
i=T

Ai,k

)

⏟⏞⏞⏞⏟⏞⏞⏞⏟

=:Ak+1

n0+

T∑
τ=2

(
τ∏
i=T

Ai,k

)
bτ−1,k + bT,k

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=:bk+1

nt+1=at+1nt+bt+1

ā=�[at]=exp (μa+σ2
a
∕2)<1.
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Equivalently, μa < −σ2
a
∕2.	As	shown	in	the	top	panels	of	Figure	1,	

as σ2
a
∕2 approaches μa, the stationary distribution becomes highly 

skewed with a “thick tail.” When it is well-defined, the mean of  
stationary distribution equals

where b̄ = �[bt] = exp (μb+σ2
b
∕2).  This stationary distribution has a 

finite variance if

Equivalently, μa < −σ2
a
. Hence, n̂ has a finite mean but infinite 

variance whenever −σ2
a
< μa < −σ2

a
∕2	(Figure	1).	When	the	variance	

is finite, it equals

and

As �[a2
t
] = ā2+Var[at], this expression for Var[n̂] implies that 

variation in the local dynamics (Var[atn̄]) contributes more to the 
variation in the population densities (Var[n̂]) than the variation in 
external recruitment (Var[bt]) i.e. Var[at] and Var[bt] appear in a sym-
metric manner in the numerator but the denominator decreases with 
Var[at]. Moreover, positive correlations between local dynamics and 
external recruitment increase the variance in the long-term popula-
tion densities.

4.2 | Matrix model of reef corals with space-limited 
recruitment

We continue with a case study of an open population of reef corals 
with space-limited recruitment. Corals are sessile organisms with pe-
lagic larvae. As such, recruitment is not strongly affected by local coral 
populations, but rather upon reproductive subsidies from external 
populations. Hughes (1984) first developed a size-structured, matrix 
population model of corals in a closed population. This model was ex-
tended by Pascual and Caswell (1991) to allow for open populations 
and space-limited recruitment. The model of Pascual and Caswell 
(1991) drew heavily upon the theoretical framework developed by 
Roughgarden et al. (1985) to describe open, age-structured barnacle 
populations with space-limited recruitment. We extend the model of 
Pascual and Caswell (1991) here to include stochastic recruitment.

(15)n̄ =
b̄

1− ā

�[a2
t
]=exp (2μa+2σ2

a
)<1.

(16)Var[�n]=
Var[βt]

1−�[a2
t
]
where βt=atn̄+bt− n̄

Var[βt]= n̄2Var[at]+2n̄Cov[at,bt]+Var[bt]

= n̄2 exp (2μa+σ2
a
)( exp (σ2

a
)−1))+2n̄ exp (μa+σ2

a
∕2)

exp (μb+σ2
b
∕2)( exp (ρσaσb)−1)

+ exp (2μb+σ2
b
)( exp (σ2

b
)−1).

F I G U R E  1   The effect of increasing within patch fluctuations σa on the mean and stationary distribution of the scalar model 
nt+1 = at+1nt+bt+1. In top panels, numerical approximations of stationary distributions for three levels of local fluctuations σa. In the bottom 
panel, the mean and SD of the stationary distribution as a function of σa. Solid line corresponds to the analytic formulas (15)–(16) and the 
crosses correspond to mean and SD	of	the	numerically	approximated	stationary	distribution.	For	the	numerical	approximations,	the	process	
was simulated for 100,000 years. Parameters: at is log-normally distributed with log mean μa	=	−0.05	and	standard	deviation	σa as shown.  
bt is log-normally distributed with log mean μb = 0.05 and log SD σb = 0.05. at and bt are independent
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Let nt(i) be the number of organisms is size class i at time t. At 
each time step, surviving individuals either remain in their current 
size class with probability R(i) or grow to the next size class with 
probability P(i). The average size, measured as an area, of each or-
ganism in a given size class is given by a(i). New individuals enter the 
population at a rate proportional to the amount of free space avail-
able, where the settling parameter, st+1, is the number of larvae per 
unit area that enter the population and survive until the next census. 
If α is the total area of suitable substrate, then the amount of free, 
unoccupied substrate at each time step given by

where w is the total number of size classes. The full model is then 
given by

with

To explore this model, we use the parameter values of Pascual 
and Caswell (1991) (adapted from Hughes (1984)). These parameter 
values were obtained from data for the reef coral Agaricia agaricites 
from	1978	to	1979.	Corals	were	groups	into	three	size	classes:	0−10	
cm2,	10−50	cm2	and	50−200	cm2. The total amount of available sub-
strate is set equal to 12 m2. With these choices, the matrix model 
becomes

We assume that settlement rates vary randomly between a low 
settlement rate of sℓ = 0.01 and a high settlement rate of sh = 0.04. 
These values lie below the critical settlement value of s = 0.06, 
above which the increased settlement rate leads to unstable and un-
bounded dynamics (Pascual & Caswell, 1991). Let p be the frequency 
of a high settlement year, with low settlement years occurring with 
frequency	1	−	p.

When the frequency of good years is low (p = .05), the station-
ary distribution is concentrated near the stable size distribution for 
the deterministic model with only bad years (p = 0; top panels in 
Figure	2).	At	intermediate	frequencies	of	good	years	(p = .5), the sta-
tionary distribution becomes increasingly normally distributed from 
the	smallest	to	largest	size	classes	(bottom	panels	in	Figure	2).	The	
population exhibits the greatest mean densities when the frequency 
of	good	years	is	high	(Figure	3a)	and	the	greatest	variation	in	abun-
dances in all size classes when good years occur at an intermediate 

frequency (p	≈	.4	 in	Figure	3b).	 Intuitively,	 at	high	or	 low	 frequen-
cies of good years, the dynamics are nearly deterministic and, con-
sequently, exhibit minimal variation. Adjacent size classes exhibit 
weak, positive correlations in densities, while the largest and small-
est	size	classes	exhibit	negative	correlations	 (Figure	3c).	As	higher	
frequencies of good years leads to lower availability of substrate, 
these correlations are less positive or more negative at higher fre-
quencies of good years. One year autocorrelations are greatest for 
the	largest	size	class	and	least	for	the	smallest	size	class	(Figure	3d).	
Intuitively, stochastic recruitment only occurs in the smallest size 
class which reduces the correlation with densities in earlier years. 
Increasing frequency of good years make these stochastic recruit-
ment events more consistent and, thereby, increase autocorrelations 
in the smallest size class.

To illustrate the use of the sensitivity and elasticity formulas, we 
examine elasticities of the mean and SD of density with respect to 
the densities of recruits arriving in good and bad years, that is sh 
and sℓ. The details for computing the sensitivities and elasticities are 
presented in Appendix S5. The mean and SD in density is most sen-
sitive to the density of recruits arriving in bad years, sℓ, particularly 
when	the	frequency	of	good	years	is	low	(Figure	4).	Interestingly,	the	
elasticity of mean densities is not stage-dependent. The elasticity of 
the SD is negative with respect to the density of recruits arriving in 
low recruitment years. The elasticity of the SD with respect to the 
density of recruits arriving in high recruitment years does depend 
slightly on stage, with smaller size classes showing a higher increase 
in SD with changes in sh.

4.3 | Integral projection model of giant clam  
dynamics

In this example, we apply the above methods to a population of 
giant clams, Tridacna maxima, using data from Yau et al. (2014). Yau 
et al. (2014) developed two deterministic size-structured IPMs to 
describe	a	population	of	giant	clams	on	Mo’orea,	French	Polynesia.	
One IPM assumed a completely closed population with no exter-
nal recruitment, while the second IPM assumed a completely open 
population with no local retention. Yau et al. (2014) also investigated 
the amount of local retention that was required for the population to 
persist in the absence of external recruitment.

To parameterize the model, Yau et al. (2014) measured demo-
graphic rates of 1,949 clams annually from 2006 to 2010. Survival 
data was fit using nonlinear logistic regression, while growth data 
was fit using ordinary least squares regression of size at time t + 1 
on size at time t. The variance in growth was also allowed to vary as 
a function of size. The size of new recruits was estimated using data 
on the size of clams <50 mm counted each year. Recruit size was as-
sumed to be normally distributed with mean and SD estimated from 
the	data.	For	the	open	model,	the	number	of	recruits	was	set	equal	
to the average number of clams <50 mm that were counted each 
year.	For	the	closed	model,	the	number	of	recruits	was	assumed	to	
be proportional to the size-specific adult gonadal mass, with only 
individuals >66.1 mm contributing reproductively to the population. 

(17)α−

w∑
i=0

a(i)nt(i),

(18)nt+1=At+1nt+bt+1,

(19)

At=

⎛
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F I G U R E  3   The effect of frequency 
of good years on mean density, standard 
deviations within size classes, correlations 
between size classes and temporal 
autocorrelation within size classes. Solid 
lines come from the analytic formulas and 
× correspond to simulation estimates. 
Numerical simulations were run for 
100,000 years. Parameters as described in 
the main text
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Gonadal mass was converted to new recruits using a conversion 
factor, cf, which was estimated by averaging the observed ratio of 
recruits	 to	 total	 gonadal	mass	each	year.	Finally,	 to	determine	 the	
amount of local retention required for persistence, Yau et al. (2014) 
varied cf to find the threshold such that the population transitioned 
from self-sustaining (population growth rate λ > 1) to declining 
(λ < 1). Table 1 shows the demographic functions and parameters 
used in the IPM.

For	 the	 stochastic	 IPM,	 we	 assume	 a	 population	 that	 includes	
both local retention and external recruitment. The model is written as

where P(y,x) represents the survival and growth of individuals from 
size x to size y, F(y,x) represents the local recruitment and b(y,t+1) 
represents the external recruitment. Clam sizes range from L = 1 
to U = 200 mm. To incorporate stochasticity into the model, we 
generated four external recruitment vectors, one for each year of 
collected data: ∫b1(x)dx = 84, ∫b2(x)dx = 167, ∫b3(x)dx = 178 and 
∫b4(x)dx = 362. Each b vector is assumed to occur with equal prob-
ability. Additionally, we varied the degree of local retention, cf, from 
cf = 0 (a fully open population with no local retention) to cf = 0.78 (a 
population with λ just below 1 in the absence of external recruitment).

Figure	5	shows	the	size-specific	mean	density,	coefficient	of	varia-
tion and correlation between size at time t and size at time t + 1 for cf = 0 
(top panel) and cf = 0.7389 (middle panel). While the size distribution 
remains roughly the same for different levels of cf, overall more clams 
are present when local retention is higher. As expected, the coefficient 
of variation is highest for the smallest sized individuals that receive the 
greatest amount of stochastic external recruitment. Additionally, as cf 
increases and the deterministic portion of the model becomes greater, 
the correlation across all sizes also increases, as expected.

We also investigated how the expected clam biomass, B, changes 
as a function of local retention. The expected total biomass of the 
population is equal to �[B] = ∫∞

0
w(x)�[n̂(x)], where w(x) is a scaling 

parameter that converts an individual of size x to its biomass. The vari-
ance of the biomass is equal to var[B] = ∫ ∫ w(x)w(y)Cov[n̂(x),n̂(y)]dxdy
.	The	bottom	panel	of	Figure	5	shows	the	log	of	the	expected	biomass	
across the range of cf values, as well as the log of the SD. As expected, 
as the degree of local retention increases such that the closed popu-
lation growth rate λ nears 1, the log biomass increases substantially. 
Additionally, the variance in biomass decreases as cf increases.

We examined the sensitivity of the mean density and the SD of 
the mean density to the probability of a particular recruitment year 
(Figure	6).	We	assume	that	 if	 the	probability	of	 type	 i year, pi, is in-
creased by θ, then the probability of the remaining three year types 
is decreased by θ/3. The details for computing these sensitivities are 
presented in Appendix S5. Our computations reveal that the mean 
density for all sizes is most sensitive to the frequency of the high-
est recruitment years and slightly less sensitive to the frequency of 
the lowest recruitment years (darkest versus lightest curves in the left 
panel	of	Figure	6).	Mean	densities	are	much	less	sensitive	to	the	fre-
quency of the intermediate recruitment years. In contrast, the SD of 
the densities in all sizes are least sensitive to the frequency of the 
lowest recruitment years and much more sensitive to frequencies of all 
the other types of recruitment years (lightest curve vs. all other curves 
in	the	right-hand	panel	of	Figure	6).	In	all	cases,	the	sensitivities	follow	
the size distribution of the population.

5  | DISCUSSION

Here, we develop methods for analysing affine models of open 
populations with continuous and discrete population structure 

n(y,t+1)=∫
U

L

(P(y,x)+F(y,x))n(x,t)dx+b(y,t+1)

F I G U R E  4   The effect of the frequency 
of good years on the elasticity of the 
mean and standard deviation of coral 
densities with respect to the densities 
of recruits arriving in a good (solid line) 
and bad (dotted line) year. The only 
differences between stages occurs in 
the elasticity of the SD in good years. 
Parameters as described in the main text
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(e.g. size and stage) experiencing stochastic local demography and 
stochastic external recruitment. Provided that the local demogra-
phy is unable to support the population (i.e. the local asymptotic 
growth rate is negative due to mortality and emigration exceeding 
reproduction), we show that all initial population states converge 
to the same asymptotic behaviour. When the environmental fluc-
tuations are non-stationary, this limiting behaviour corresponds to a 

“pull-back attractor” in the mathematical theory of non-autonomous 
systems (Kloeden & Rasmussen, 2011) which more recently has 
been dubbed an “asymptotically environmentally dependent trajec-
tory” by Chesson (2017). When the environmental fluctuations are 
stationary, these limiting behaviours are characterized by a unique 
stationary	distribution	of	the	model.	For	environments	with	a	mix-
ture of periodic and serially uncorrelated fluctuations, we derived 

F I G U R E  5   The size-specific mean density, coefficient of variation, and correlation between size at time t and size at time t + 1 in an 
open population with no local retention (cf = 0; top panel), and a clam population with λ just below 1 in the absence of external recruitment 
(cf = 0.7389; middle panel). The bottom panel shows the total log clam biomass as a function of the degree of local retention, cf
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F I G U R E  6   The sensitivity of the 
mean density and the SD of the mean 
density to changes in the frequency of a 
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explicit formulas for the mean and covariance of these stationary 
distributions and provide sensitivity formulas for these quantities. In 
particular, our results extend the work of (Gross and Edmunds, 2015) 
for discretely structured populations experiencing uncorrelated en-
vironments in only external recruitment.

We show, using a general, unstructured model, that variation in 
local dynamics contributes more to variance in population densities 
relative to variance in external recruitment. We show also that pos-
itive correlations between local dynamics and external recruitment 
increase the variance in long-term population densities, while neg-
ative	correlations	will	decrease	this	variance.	Finally,	we	show	that,	
under certain conditions, it is possible for a population to be regu-
lated, but have an infinite mean density. This effect occurs when the 
stochastic growth rate of the closed portion of the model is nega-
tive, but the log eigenvalue of the averaged system is positive. In this 
case, large, rare fluctuations contribute to the mean, but since the 
stochastic growth rate of the closed portion of the model is nega-
tive, the population remains regulated. This result provides an open 
population parallel to what Lewontin and Cohen (1969) found for 
closed populations: “even though the expectation of the population 
size may grow infinitely large with time, the probability of extinction 
may approach unity, owing to the difference between the geometric 
and arithmetic mean growth rates.”

We also show the application of the methods to two struc-
tured marine populations, specifically investigating the impact of 
changing the frequency of good recruitment years and changing 
the degree of openness of the population. In general, our results 
are intuitive. Mean population densities are highest when there is 
less variability in recruitment, while the SD of the mean population 
density is highest when there is greater variability in recruitment. 
With the IPM, we find that increases in mean density only occur 
with increasing the frequency of the best recruitment year, and 
that this effect is slightly greater than the negative effect of in-
creasing the frequency of the worst recruitment year, likely due 
to relative distance of the best and worst recruitment levels from 
the average recruitment value. Moreover, using the matrix model, 
we find that a small number of good years is nearly as effective as 
a large number of good years at contributing to increases in mean 
densities, due to the dependence of recruitment on available open 
space.

Of particular interest is the use of the methods to study the 
covariance structure of the population. Using the IPM, we see that 
decreasing recruit variability by decreasing the degree of population 
openness leads to higher correlations across sizes of individuals in 
the population. Conversely, when recruit variability is high, correla-
tion across sizes is reduced and is mostly through direct growth from 
one size to another between time steps. In the matrix model, cor-
relation between sizes is positive for adjacent size classes (i.e. high 
population densities in one size class will lead to high densities in 
the next size class). However, the correlation between the smallest 
and largest size class is negative, with the relationship most negative 
when the frequency of good years is high. This is most likely due to 
the	impact	of	space-limitation	on	recruitment.	Finally,	we	can	use	the	

methods to investigate the autocorrelation structure of the popula-
tion	between	different	time	steps.	For	a	single-year	time	step	in	the	
matrix model, we see that the autocorrelation is highest for the larg-
est size classes (with no variable input) and lowest for the smallest 
size class (due to the variability in recruitment). As the frequency of 
good years increases, the autocorrelation of the smallest size class 
increases substantially.

While we used the methods presented here for models of open 
populations,	 they	also	apply	 to	 two	other	classes	of	models.	First,	
consider a nonlinear, stochastic difference equation nt+1 = F(nt,ξt) 
where ξt describe the environmental fluctuations. If these fluctua-
tions are “small” and n̂ is a stable equilibrium of the difference equa-
tion nt+1 = F(nt,0), then the stochastic dynamics near this equilibrium 
may be approximated by nt+1 = ∂nF(n̂,0)(nt− n̂)+ ∂�F(n̂,0)�t which is 
a model of the form considered here. Hence, our methods provide 
a means to approximate the covariance matrix of this linear ap-
proximation whenever the ξt are serially uncorrelated. Second, our 
methods also apply to extensions of multispecies models studied by 
(Cooper et al., 2015, Gross and Edmunds, 2015 and Ives et al., 2003). 
If xi denotes the density of species i, these models take the form 
xi(t+1) = ri(t)x1(t)

ai1(t)x2(t)
ai2(t) … xn(t)

aik(t) where ri(t) corresponds to 
intrinsic growth rates of species i and aij(t) describes time-dependent 
species interactions. Setting ni =  log xi yields a model of the form 
nt+1 = Atnt+bt where At = aij(t) and bt =  log ri(t). Hence, our results 
apply and generalize the work of (Cooper et al., 2015, Gross and 
Edmunds, 2015 and Ives et al., 2003) who assumed that the interac-
tion terms did not vary in time.

In conclusion, when studying real-world populations, it is import-
ant to understand the interplay of open recruitment, stochasticity in 
demographic rates and population structure. This is particularly im-
portant when studying organisms with ecological, economic or public 
interest importance, such as invasive or threatened species, and when 
studying the effect of changing environmental conditions (e.g. due to 
climate change). Our results show that, for open populations, it is im-
portant to understand the effects of local demographic stochasticity, 
rather than focusing solely on variability in recruitment, as is often 
done, particularly for marine organisms. We also show that our meth-
ods can be used to directly assess the impact of decreases in the fre-
quency of good years, as well as investigate the correlation between 
population states and changes in population states due to changing 
environmental conditions.
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In these Appendices we present the proofs of convergence for the non-autonomous case, existence
and convergence to a stationary distribution for stationary environments, the derivation of mean
and covariance of the stationary distribution for uncorrelated environments, and identification of
the periodic solution for periodic environments. For the uncorrelated and periodic environments,
we derive the sensitivity formulas presented in the main text.

Appendix S1 Convergence in general

In this Appendix, we consider solutions of (1) with minimal assumptions on the sequenceA1,A2, . . .
and b1,b2, . . . . In particular, the sequence need not be stationary. To prove exponential convergence
of all initial conditions to the same time varying solution, we assume that

r(At) := lim sup
t!1

1

t
log kAtAt�1 . . .A1k < 0.

Given two initial conditions n0 and en0, let nt and ent be the corresponding solutions. It follows
from (2) in the main text that nt � ent =

Q1
i=t Ai(n0 � en0). Hence,

lim sup
t!1

1

t
log knt � entk = lim sup

t!1

1

t
log

�����

 
1Y

i=t

Ai

!
(n0 � en0)

�����

 lim sup
t!1

1

t

 
log

�����

1Y

i=t

Ai

�����+ log k(n0 � en0)k
!

= r(At) < 0.

Thus, as claimed, solutions corresponding to di↵erent initial conditions converge to one another at
an exponential rate.
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Appendix S2 Convergence for stationary environments

Assume that A1,A2,A3, . . . are a stationary and ergodic sequence of non-negative operators, and
E[max{log kAtk, 0}] < 1. As log kAt+s . . .A1k  log kAt+s . . .As+1k + log kAs . . .A1k, Kingman
[1973]’s subadditive ergodic theorem implies there exists an r (possibly �1) such that

lim
t!1

1

t
log kAt+⌧ . . .A⌧+1k = r for all integers ⌧

with probability one. Let . . . ,A�2,A�1,A0,A1,A2, . . . and . . . ,b�2,b�1,b0,b1,b2, . . . be the
unique extensions to bi-infinite, stationary, ergodic sequences. Kingman’s subadditive ergodic the-
orem also implies

lim
t!1

1

t
log kA⌧�1 . . .A⌧�tk = r for all integers ⌧

with probability one.
Now assume that E[log kbtk] < 1 and r < 0. Define

bnt = bt +
1X

⌧=1

 
t�⌧+1Y

i=t

Ai

!
bt�⌧ .

We will show that nt is well-defined with probability one, stationary, and nt converges to bnt for
any initial condition n0. Our arguments follow Brandt [1986] who proved these statements for the
scalar case (i.e. nt takes values in [0,1)).

To see that bnt is will defined with probability one, notice that

lim sup
⌧!1

1

⌧
log

�����

 
t�⌧+1Y

i=t

Ai

!
bt�⌧

�����  lim sup
⌧!1

1

⌧

 
log

�����

t�⌧+1Y

i=t

Ai

�����+ log kbt�⌧k
!

= r < 0 with probability one.

Hence, Cauchy’s criterion for convergence of infinite sums holds with probability one. As the
compact metric spaces are complete, bnt is well-defined with probability one.

Next we verify that bnt is a solution to the stochastic di↵erence equation:

At+1bnt + bt+1 = At+1

 
bt +

1X

⌧=1

 
t�⌧+1Y

i=t

Ai

!
bt�⌧

!
+ bt+1

= At+1bt +
1X

⌧=1

 
t�⌧+1Y

i=t+1

Ai

!
bt�⌧ + bt+1

= At+1bt +
1X

⌧=2

 
t+1�⌧+1Y

i=t+1

Ai

!
bt+1�⌧ + bt+1

= bt+1 +
1X

⌧=1

 
t+1�⌧+1Y

i=t+1

Ai

!
bt+1�⌧ = bnt+1.
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Stationarity of bnt follows from stationarity of At and bt.
To prove convergence of nt for a given initial state n0 to bnt as t ! 1, (2) in the main text

implies that that nt � bnt =
Q1

i=t Ai(n0 � bn0). Hence,

lim sup
t!1

1

t
log kbnt � ntk  lim sup

t!1

1

t

 
log

�����

1Y

i=t

Ai

�����+ log kbn0 � n0k
!

= r < 0

with probability one. Hence, as claimed, nt converges exponentially fast to bnt.
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Appendix S3 Formulas for uncorrelated environments

Assume that A1,A2, . . . and b1,b2, . . . are independent and identically distributed sequences, and
At and bt are independent. Furthermore, assume E[logmax{kbtk, 0}] < 1 and r < 0. Then
Appendix S2 implies there exists a stationary solution bnt.

To find the expectation of bnt (under the assumption it exists), define

n̄ = E[bnt], Ā = E[At] and b̄ = E[bt].

By stationarity and independence, we have that

n̄ = E[bnt+1] = E[At+1bnt + bt+1]

= Ān̄+ b̄

Thus,

(Id� Ā)n̄ = b̄. (21)

If the spectral radius of Ā is less than one, then Id� Ā is invertible and

n̄ = (Id� Ā)�1b̄. (22)

To determine the sensitivity of n̄ to a parameter ✓, implicit di↵erentiation of (21) yields

@

@✓
(Id� Ā)n̄ =

@b̄

@✓

�@Ā

@✓
n̄+ (Id� Ā)

@n

@✓
=

@b̄

@✓

(Id� Ā)
@n

@✓
=

@Ā

@✓
n̄+

@b̄

@✓

Thus, provided the spectral radius of Ā is less than one,

@n

@✓
= (Id� Ā)�1

✓
@Ā

@✓
n̄+

@b̄

@✓

◆

as claimed in the main text.
To find the covariance of bnt (assuming it exists), define

↵t = bnt � n̄ and �t = Atn̄+ bt � n̄.

Then E[�t] = 0, E[↵t] = 0, and Cov[n̂] = E[↵t ⌦ ↵t]. Furthermore, ↵t+1 = At+1↵t + �t+1.
Stationarity, independence, and properties of tensor products imply
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Cov[bn] = E[↵t+1 ⌦ ↵t+1]

= E[(At+1↵t + �t+1)⌦ (At+1↵t + �t+1)]

= E[(At+1↵t)⌦ (At+1↵t)] + E[�t+1 ⌦ �t+1]

= E[(At+1 ⌦At+1)(↵t ⌦ ↵t)] +Cov[�t+1]

= E[At+1 ⌦At+1]E[↵t ⌦ ↵t] +Cov[�t+1]

= E[A1 ⌦A1]Cov[bn] +Cov[�1]

(Id� E[A1 ⌦A1])Cov[bn] = Cov[�1]

(23)

Hence, provide that the spectral radius of E[A1 ⌦A1] is less than one, then

Cov[bn] = (Id� E[A1 ⌦A1])
�1Cov[�1]

as claimed in the main text. In the finite dimensional case, Cov[bn] = E[↵1⌦K ↵1] = E[↵1↵T
1 ] where

T denotes the transpose. We can solve this system of linear equations using the vec operator and
the Kronecker product as follows:

vec
�
E[↵1↵

T
1 ]
�
= (Id� E[A1 ⌦K A1])

�1 vec (Cov[�1]) .

To find the sensitivity formula for Cov[bn], we can implicitly di↵erentiate (23) with respect to the
parameter ✓:

@Cov[bn]
@✓

=
@

@✓
(E[A1 ⌦A1]Cov[bn] +Cov[�1])

=
@E[A1 ⌦A1]

@✓
Cov[bn] + E[A1 ⌦A1]

@Cov[bn]
@✓

+
@Cov[�1]

@✓
.

Solving yields

@Cov[bn]
@✓

= (Id� E[A1 ⌦A1])
�1

✓
@E[A1 ⌦A1]

@✓
Cov[bn] + @Cov[�1]

@✓

◆
.

In finite dimensions, this equation can be expressed in terms of the vec and Kronecker operations
as presented in the main text.

Finally, the covariance between bn0 and bnt with t � 1 is given by

E[↵0 ⌦ ↵t] = E
"
↵0 ⌦

 
�t +

tX

⌧=2

 
⌧Y

i=t

Ai

!
�⌧�1 +

 
1Y

i=t

Ai

!
↵0

!#

= E
"
↵0 ⌦ �t +

tX

⌧=2

↵0 ⌦
 

⌧Y

i=t

Ai

!
�⌧�1 + ↵0 ⌦

 
1Y

i=t

Ai

!
↵0

#

= E
" 

Id⌦
 

1Y

i=t

Ai

!!
(↵0 ⌦ ↵0)

#

= E
"
Id⌦

1Y

i=t

Ai

#
Cov[bn]
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as claimed in the main text. The sensitivity formula in the main text follows from direct di↵eren-
tiation using the product and chain rules.
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Appendix S4 Formulas for periodic environments

To find the formula for this periodic trajectory, we consider the time T map given by

n(k+1)T = bT +
TX

⌧=2

 
⌧Y

i=T

Ai

!
b⌧�1

| {z }
=:eb

+

 
1Y

i=T

Ai

!

| {z }
=: eA

nkT k = 0, 1, 2, . . .

whose equilibrium bn satisfies ⇣
Id� eA

⌘
bn = eb

As the dominant eigenvalue of
Q1

i=T Ai is less than one, the operator Id � eA is invertible and we
have

bn =
⇣
Id� eA

⌘�1 eb

If we define bn0 = bn and bnt = Atbnt�1 + bt for 1  t  T � 1, then for any initial condition n0 and
0  ⌧  T � 1, we have

lim sup
k!1

1

k
log knkT+⌧ � bn⌧k  r(At)

i.e. all solutions converge exponentially quickly to the periodic solution bn0, . . . , bnT�1. The sensitivity
formulas from implicit di↵erention of the equation bn0 = eAbn0+ eb and di↵eretiation of the equations
bnt = Atbnt�1 + bt for 1  t  T � 1.
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Appendix S5 Calculations for examples

For the coral reef and giant clam examples, theAt and bt are chosen at random from a finite number
of choices, say A(1), . . . ,A(`) and b(1), . . . ,b(`), with probabilities p(1), . . . , p(`). For these types
of models,

Ā = E[At] =
X

i

piA(i), b̄ = E[bt] =
X

i

pib(i) and E[A1 ⌦A1] =
X

i

piA(i)⌦A(i). (24)

For the sensitivity formulas, there are two cases to consider. First, suppose that the A(i) and b(i)
depend smoothly on some parameter ✓, but pi do not depend on ✓. Then

@Ā

@✓
=
X

i

pi
@A(i)

@✓
and

@b̄

@✓
=
X

i

pi
@b(i)

@✓
. (25)

Furthermore,

@E[A1 ⌦A1]

@✓
=

@

@✓

X

i

piA(i)⌦A(i)

=
X

i

pi

✓
@A(i)

@✓
⌦A(i) +A(i)⌦ @A(i)

@✓

◆
.

(26)

and

@Cov[A1n̄+ b1]

@✓
=

@

@✓

X

i

pi(b(i) + (A(i)� Id)n̄)⌦ (b(i) + (A(i)� Id)n̄)

=
X

i

pi

✓
@A(i)

@✓
n̄+

@b(i)

@✓
+ (A(i)� Id)

@n̄

@✓

◆
⌦ (b(i) + (A(i)� Id)n̄)

+
X

i

pi(b(i) + (A(i)� Id)n̄)⌦
✓
@A(i)

@✓
n̄+

@b(i)

@✓
+ (A(i)� Id)

@n̄

@✓

◆
.

(27)

Second, suppose that the pi depend smoothly on the parameter ✓, but A(i) and b(i) do not depend
on ✓. Then

@Ā

@✓
=
X

i

@pi
@✓

A(i) and
@b̄

@✓
=
X

i

@pi
@✓

b(i). (28)

Furthermore

@E[A1 ⌦A1]

@✓
=
X

i

@pi
@✓

A(i)⌦A(i) (29)

and

@Cov[A1n̄+ b1]

@✓
=
X

i

@pi
@✓

(b(i) + (A(i)� Id)n̄)⌦ (b(i) + (A(i)� Id)n̄). (30)
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For the coral reef example, let p1 = p, p2 = 1� p,

A(1) =

0

@
0.5135� 5 sh �30 sh �125 sh

0.2072 0.6667 0
0 0.1746 0.7818

1

A , A(2) =

0

@
0.5135� 5 s` �30 s` �125 s`

0.2072 0.6667 0
0 0.1746 0.7818

1

A ,

b(1) =

0

@
120000sh

0
0

1

A and b(2) =

0

@
120000s`

0
0

1

A .

Thus,

@A(1)

@sh
=

@A(2)

@s`
=

0

@
�5 �30 �125
0 0 0
0 0 0

1

A and
@A(2)

@sh
=

@A(1)

@s`
=

0

@
0 0 0
0 0 0
0 0 0

1

A .

Moreover,

@b(1)

@sh
=

@b(2)

@s`
=

0

@
120000

0
0

1

A and
@b(2)

@sh
=

@b(1)

@s`
=

0

@
0
0
0

1

A .

With these derivatives and formulas (24)–(27), we can use the sensitivity formulas in the main text
to compute the sensitivities of n̄, Cov[bn], and Cov⌧ [bn] for the coral reef model to parameters ✓ = sh
and ✓ = s`.

For the giant clam IPM example, we have p1, . . . , p4,A(1) = · · · = A(4) = A, and b(1), . . . ,b(4).
We calculated the sensitivities of means and covariances to the frequencies of di↵erent recruitment
values. Specifically, to model an increase in the frequency of type i years, we let replaced pi by
pi + ✓ and pj for j 6= i by pj � ✓/3. Then

@Ā

@✓
=

@A

@✓
= 0 and

@b̄

@✓
= b(i)� 1

3

X

j 6=i

b(j).

Furthermore,

@E[A1 ⌦A1]

@✓
=

@A⌦A

@✓
= 0

and

@Cov[A1n̄+ b1]

@✓
= (b(i) + (A� Id)n̄)⌦ (b(i) + (A(i)� Id)n̄)

�1

3

X

j 6=i

(b(j) + (A� Id)n̄)⌦ (b(j) + (A� Id)n̄).
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