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abstract: Environmental fluctuations can mediate coexistence
between competing species via the storage effect. This fluctuation-
dependent coexistence mechanism requires three conditions:
(i) there is a positive covariance between species responses to envi-
ronmental conditions and the strength of competition, (ii) there are
species-specific environmental responses, and (iii) species are less
sensitive to competition in environmentally unfavorable years. In
serially uncorrelated environments, condition (i) occurs only if fa-
vorable environmental conditions immediately and directly in-
crease the strength of competition. For many demographic param-
eters, this direct link between favorable years and competition may
not exist. Moreover, many environmental variables are temporal
autocorrelated, but theory has largely focused on serially uncor-
related environments. To address this gap, a model of competing
species in autocorrelated environments is analyzed. This analysis
shows that positive autocorrelations in demographic rates that in-
crease fitness (e.g., maximal fecundity or adult survival) produce
the positive environment-competition covariance in condition (i).
Hence, when these demographic rates contribute to buffered popu-
lation growth, positive temporal autocorrelations generate a storage
effect; otherwise, they destabilize competitive interactions. For neg-
atively autocorrelated environments, this theory highlights an al-
ternative stabilizing mechanism that requires three conditions:
(i0) there is a negative environment-competition covariance, (ii) there
are species-specific environmental responses, and (iii0) species are
less sensitive to competition inmore favorable years.When the con-
ditions for either of these stabilizing mechanisms are violated, tem-
poral autocorrelations can generate stochastic priority effects or
hasten competitive exclusion. Collectively, these results highlight
that temporal autocorrelations in environmental conditions can
play a fundamental role in determining ecological outcomes of com-
peting species.
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Introduction

Most species compete with other species (Gurevitch et al.
1992; Kaplan and Denno 2007). This mutual antagonism
can result in one species driving other species extinct.
According to ecological theory, this competitive exclusion
is inevitable when there are more species than limiting fac-
tors and the community approaches a steady state (Volterra
1928; McGehee and Armstrong 1977). Hutchinson (1961)
proposed that fluctuations in environmental conditions
may allow species competing for few limiting factors to
coexist. In a series of influential articles (Chesson and
Warner 1981; Chesson 1983, 1988, 1994), Peter Chesson
developed a mathematical theory for when and how envi-
ronmental fluctuations, via nonlinear averaging and the
storage effect, mediate species coexistence. In recent de-
cades, empirical evidence for these coexistence mecha-
nisms has been identified in a diversity of systems, includ-
ing zooplankton (Cáceres 1997), prairie grasses (Adler
et al. 2006), desert annual plants (Angert et al. 2009), trop-
ical trees (Usinowicz et al. 2012), phytoplankton (Ellner
et al. 2016), sagebrush (Chu and Adler 2015; Ellner et al.
2016), and nectar yeasts (Letten et al. 2018).
Until recently (Benaïm and Schreiber 2019), mathe-

matical methods for studying coexistence for species ex-
periencing environmental stochasticity assumed that these
fluctuations are uncorrelated in time (Chesson 1982; Ches-
son and Ellner 1989; Ellner 1989; Schreiber et al. 2011;
Hening and Nguyen 2018), and ecological theory has
mostly focused on this case (Chesson 1994, 2000; Angert
et al. 2009; Stump and Chesson 2017; Kortessis and Ches-
son 2019; but see Li and Chesson 2016). Environmental
fluctuations, however, are often autocorrelated (Steele 1985).
Minimum andmaximalmonthly temperatures in both ter-
restrial and marine systems are typically positively auto-
correlated (Vasseur and Yodzis 2004); months with higher
temperature maxima tend to be followed by months with
higher maxima. Approximately 20% of terrestrial sites on
Earth exhibit positively autocorrelated yearly rainfall, while
5% exhibit negatively autocorrelated rainfall (Sun et al.
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2018). Although considered less frequently, negative auto-
correlations may be common in other situations (Metcalf
and Koons 2007). For example, density-dependent driven
oscillations of an herbivore or predator can result in neg-
atively autocorrelated fluctuations in the mortality rates
of its prey species.
Theoretical and empirical studies show that autocor-

related environmental fluctuations can have large impacts
on population demography (Foley 1994; Petchey et al.
1997; Cuddington and Yodzis 1999; Gonzalez and Holt
2002; Pike et al. 2004; Cuddington and Hastings 2016).
Theory predicts that positively autocorrelated fluctuations
increase extinction risk when populations exhibit under-
compensatorydynamics, but decreases extinction riskwhen
populations exhibit overcompensatory dynamics (Petchey
et al. 1997). Consistent with the first theoretical prediction,
clonal populations of Folsomia candida exhibited shorter
times to extinction when fluctuating mortality rates were
positively autocorrelated (Pike et al. 2004). For structured
populations, temporal autocorrelations can alter long-term
population growth rates (Roy et al. 2005; Tuljapurkar and
Haridas 2006; Schreiber 2010). For example, laboratory
experiments with paramecia and theory predicted that
positively autocorrelated fluctuations in the local fitnesses
of spatially structured populations can increase long-term
population growth rates (Roy et al. 2005; Matthews and
Gonzalez 2007; Schreiber 2010).
As autocorrelated fluctuations are common and have

demographic impacts, they likely influence ecological out-
comes of competing species. As recent mathematical the-
ory (Benaïm and Schreiber 2019) provides the analytical
tools to explore this influence, I analyze models of two spe-
cies competition accounting for autocorrelated fluctuations
in environmental conditions. As these models correspond
to competition for a single limiting factor and undercom-
pensatory density dependence, stable coexistence does
not occur in constant environments; only neutral coexis-
tence is possible. Moreover, uncorrelated environmental
fluctuations do not stabilize neutral coexistence in these
models. Therefore, using a mixture of analytical and nu-
merical approaches applied to the stochastic models, I
tackle the following questions: When do positively or neg-
atively autocorrelated fluctuations mediate coexistence?
When do they disrupt neutral coexistence, and if they do,
is the identity of the excluded species predictable? What
types of shifts in competitive outcomes are possible as tem-
poral autocorrelations shift from negative to positive?
Model and Methods

Consider two competing species with densities n1 and n2.
The fitness of individuals within species i, f (C, Ei), de-
creases with the strength of competition C and increases
with respect to an environmental response variable Ei.
The strength of competition is given by a weighted com-
bination of the species densities, C p a1n1 1 a2n2, where
ai determines the per capita contribution of species i to
the strength of competition. The environmental variable
Ei represents the net effect of environmental conditions
on species i’s fitness. Unlike much of the prior work on
the storage effect (e.g., Chesson 1994; Kuang and Chesson
2009; Stump and Chesson 2017), the strength of competi-
tion C is not a function of the environmental variables Ei.
Therefore, for uncorrelated environmental fluctuations,
there is no covariance between the environment and the
strengthof competition and, consequently, no storage effect
(Chesson 1994). Consistent with meteorological models of
various weather variables (Wilks andWilby 1999; Semenov
2008), fluctuations in the environmental response variables
follow a multivariate autoregressive process with means �ei,
standard deviations ji, cross correlation t, and temporal au-
tocorrelation r. Under these assumptions, the dynamics of
the system are

ni(t 1 1) p ni(t)f (a1n1(t)1 a2n2(t),�ei 1 Dei(t)) with i p 1, 2,

Dei(t 1 1) p rDei(t)1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 r2

p
Zi(t 1 1), ð1Þ

where Dei(t) are the deviations of the environmental vari-
ables away from the means �ei and Zi(t) are independent
in time with mean 0, standard deviation ji, and cross cor-
relation Corr[Z1(t)Z2(t)] p t. Provided that jrj ! 1 (i.e.,
the environmental fluctuations are neither perfectly posi-
tively nor negatively autocorrelated), the environmental
deviations Dei(t) converge to a unique stationary distribu-
tion cDei with mean 0, variance j2

i , and cross correlation t.
The (12 r2)1=2 term in equation (1) allows one to indepen-
dently vary the variance of the stationary distribution and
the temporal autocorrelation.
I study the dynamics of equation (1) using a mixture of

analytical and numericalmethods. The analysis is based on
the per capita growth rates log f averaged over fluctuations
in the environmental variables and the strength of com-
petition (Chesson 1994). The analysis assumes that the
maximal per capita growth rates, E[log f (0,�ei 1 Dei(t))],
of each species in the absence of competition are positive
and that the fitness function f exhibits compensating den-
sity dependence. These assumptions ensure there exists a
unique stationary distribution for the subsystem consist-
ing of species i and the two environmental variables E1 p
�e1 1 De1 and E2 p �e2 1 De2 (Benaïm and Schreiber
2009). Let (n̂i, Ê1, Ê2) be random variables with this sta-
tionary distribution. Here, the stationary distribution of
the competitive strengths equals Ĉ i p ain̂i. Conditions
for coexistence or exclusion depend on the invasion growth
rate of species j ( i

rj p E[log f (Ĉ i, Ê j)] j ( i, ð2Þ
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which corresponds to the average per capita growth rate of
species j when it is rare and species i is common. If both
invasion growth rates are positive (r1 1 0, r2 1 0), then
the species coexist in the sense of stochastic persistence
(see theorem 1 in Benaïm and Schreiber 2019), that is, a
statistical tendency to stay away from the extinction set
(fig. 1A). If r1 ! 0 ! r2 (respectively, r2 ! 0 ! r1), then spe-
cies 2 excludes species 1 (respectively, species 1 excludes
species 2; see corollary 2 in Benaïm and Schreiber 2019;
fig. 1B). Finally, if both invasion growth rates are negative,
then the system exhibits a stochastic bistability: whenever
both species are initially present, there is a positive prob-
ability (p 1 0 depending on the initial densities) that spe-
cies 1 is excluded and a complementary positive probability
(12 p 1 0) that species 2 is excluded (see theorem 3 and
corollary 2 in Benaïm and Schreiber 2019).
To derive analytic approximations for the invasion

growth rates rj, I use a diffusion-type scaling in which
�e1 2 �e2, j2

1, and j2
2 are small and of the same order (Turelli

1977; Karlin and Taylor 1981). To illustrate the analytic
results for general model (1), I numerically compute the
invasion growth rates for fitness functions f with a density-
dependent componentl=(11 C) andadensity-independent
component s. In the theoretical and empirical literature
(e.g., Adler et al. 2007; Godoy et al. 2014), the density-
dependent term is usually interpreted as a maximal per
capita fecundity l that is reduced by competition C, while
the density-independent term 0 ! s ! 1 corresponds to
survivorship. I examine environmentally driven fluctuations
in both terms. For fluctuations in the density-dependent
term, the fitness function equals

f (C, Ei) p
exp(Ei)
11 C

1 s, ð3Þ

while for fluctuations in the density-independent terms it
equals

f (C, Ei) p
l

11 C
1

exp(Ei)
11 exp(Ei)

: ð4Þ

In both cases, the variables Zi(t) are drawn from bivariate
normals withmean 0, variances j2

i , and cross correlation t.
Thus, with their traditional interpretation, the fluctuations
in equation (3) correspond to lognormally distributedfluc-
tuations in maximal fecundities, and the fluctuations in
equation (4) correspond to logit-normally distributed fluc-
tuations in survival. While I focus on this traditional inter-
pretation of equations (3) and (4), one can reverse their in-
terpretation for species where density dependence acts
more strongly on survivorship than reproduction, for ex-
ample, in salmonids (Grossman and Simon 2020).
Results

I first present results for the deterministic model, which
show that stable coexistence does not occur without en-
vironmental fluctuations. Next, I present results for en-
vironmental fluctuations, where species only differ to the
degree the environmental responses are cross correlated,
that is, to the extent r ! 1. In this special case, the deter-
ministic dynamics are neutrally stable, and environmen-
tal fluctuations lead to coexistence, to fluctuating neutral
coexistence, or to a stochastic priority effect. Finally, I
present results in which the species differ in their mean
environmental response (�e1 ( �e2), the variation in their
environmental responses (j1 ( j2), and the correlation
in their environmental responses. These results highlight
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Figure 1: Stochastic coexistence (A) or exclusion (B) for compe-
tition in a fluctuating environment. Parameters: Fitness function (4)
with fluctuations in survival, with l p 2 and a1 p a2 p 0:01. Zi(t)
are normally distributed with means 0, standard deviations ji p 0:5,
cross correlation t p 2 1, and autocorrelations r p 2 0:5 in A and
r p 0:5 in B.
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when environmental stochasticity reverses competitive
outcomes as well as stabilizes competitive interactions.
Neutrality or Exclusion in Constant Environments

When the mean environmental responses are equal (�e1 p
�e2) and there are no environmental fluctuations (j1 p
j2 p 0), the species exhibit neutral coexistence (proof
is provided in the appendix, available online). Specifically,
there exists a line of equilibria connecting the single-
species equilibria. Community trajectories always converge
to one of these equilibria, but different initial conditions can
converge to different equilibria. This coexistence is not sta-
ble in that small pulse perturbations typically shift the com-
munity to a different equilibrium state (Schreiber 2006). In
contrast, if one species has a highermean environmental re-
sponse than the other (�e1 ( �e2), then this species compet-
itively excludes the other species (proof is provided in the
appendix). These conclusions are consistent with general
theory on limiting similarity (see, e.g., Meszéna et al.
2006; Pásztor et al. 2016).
From Neutrality to Coexistence
or Alternative Stable States

The simplest case in which environmental fluctuations
alter ecological outcomes is when both species have the
same mean environmental response (�e1 p �e2) and expe-
rience the same degree of variation in their environmental
response (j1 p j2). Without environmental fluctuations,
this leads to neutral coexistence in which rj p 0 for both
species. With environmental fluctuations, our diffusion
approximation for model (1) yields (derivation is pro-
vided in the appendix)

rj ≈ ∂2 log f
∂C∂E

#Cov[Ĉ i, Ê j2Ê i], ð5Þ

where the mixed partial derivative, (∂2 log f )=(∂C∂E), is
evaluated at E p �ej and the equilibrium value C p ain*

i ,
where f (ain*

i ,�ei) p 1. The sign of this mixed partial deriv-
ative determines whether the log fitness function is super-
additive (positive sign) or subadditive (negative sign) with
respect to the interactive effects of competition and envi-
ronmental fluctuations (see, e.g., Puterman 2014). Sub-
additivity means that the log fitness function, log f , is less
sensitive to the effects of competition when environmental
conditions are poor. This corresponds to population buff-
ering, a necessary component of the storage effect (Ches-
son 1994; Ellner et al. 2016). Superadditivity, in contrast,
means that the log fitness function is more sensitive to
the effects of competition when environmental conditions
are poor, but also that it is less sensitive to the effects of
competition when environmental conditions are good.
For example, for fitness function (3) with fluctuations in
fecundity and positive survival 0 ! s ! 1, the log fitness
function is subadditive and population buffering occurs.
In contrast, for fitness function (4) with fluctuations in
survival, the log fitness function is superadditive and pop-
ulations are less sensitive to competition in years with high
survival.
The final term in equation (5) corresponds to the co-

variance between the strength of competition due to the
common species (Ci) and the difference (Ej 2 Ei) between
the environmental responses of the rare and common
species. This term is positive when years with high and
low densities, respectively, of the common species also cor-
respond to years where the rare species has a higher and a
lower environmental response, respectively. This covari-
ance for model (1) is proportional to a product of three
terms (derivation is provided in the appendix):

Cov Ĉ i, Ê j 2 Ê i

� �
p 2k#r#(12 t)#j2, ð6Þ

where the proportionality term k p k(r) is positive for all
r and k(r)#r is an increasing function of r. When the en-
vironmental fluctuations are serially uncorrelated (r p 0)
or the species have identical responses to the environment
(t p 1), this covariance is zero; consequently, the inva-
sion growth rates equal zero, and the species exhibit a fluc-
tuating form of neutral coexistence. In contrast, when there
are species-specific response to the environment (t ! 1)
and environmental fluctuations are autocorrelated (r ( 0),
equation (6) implies that the sign of Cov[Ĉ i, Ê j 2 Ê i] is op-
posite of the sign of the autocorrelation. Hence, in posi-
tively autocorrelated environments, yearswith greater den-
sities of the common species tend to be years where the
environmental conditions are less favorable to the rare spe-
cies. Moreover, the magnitude of the covariance is greater
for positive autocorrelations thannegative autocorrelations—
that is, jCov[Ĉ i, Ê j 2 Ê i]j is greater for a given r 1 0 than
for the corresponding 2r ! 0 (derivation is provided in
the appendix). Intuitively, positive autocorrelations gen-
erate greater variance in the strength of competition than
negative autocorrelations and, thereby, yield a greater
covariance.
Collectively, equations (5) and (6) imply that environ-

mental fluctuations promote coexistence (i.e., rj 1 0) in
two situations: (i) the log fitness is superadditive and en-
vironmental fluctuations are negatively autocorrelated
or (ii) the log fitness is subadditive and environmental
fluctuations are positively autocorrelated (i.e., the storage
effect). In contrast, if (iii) the log fitness function is super-
additive and environmental functions are positive auto-
correlated or (iv) the log fitness function is subadditive
and the fluctuations are negatively autocorrelated, then
the system is stochastically bistable: with complementary,
positive probabilities species 1 or 2 is excluded.
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Figure 2 illustrates these analytical conclusions for
the specific fitness functions with fluctuating fecundity
(eq. [3]) or with fluctuating survival (eq. [4]). As the log
fitness for equation (3) is subadditive with respect to fe-
cundity, positively autocorrelated fluctuations in fecun-
dity mediate coexistence, while negative autocorrelations
lead to stochastic bistability (fig. 2A). In contrast, as the
log fitness for equation (4) is superadditive with respect
to survival, positively autocorrelated fluctuations in sur-
vival lead to stochastic bistability, while negative autocor-
relations promote coexistence (fig. 2B).
The Effects of Fitness Differences
and Nonlinear Averaging

Asymmetries in the mean response (�e1 ( �e2) and the
variability of these responses (j1 ( j2) lead to two addi-
tional terms in the invasion growth rate for model (1)
(derivation is provided in the appendix):

rj ≈ ∂ log f
∂E

(�ej 2 �ei)1
1
2
∂2 log f
∂E2 (j2

j 2 j2
i )1

∂2 log f
∂C∂E

#Cov[Ĉ i, Ê j 2 Ê i]: ð7Þ
As the log fitness increases with the environmental re-
sponse variable (E), the first term in equation (7) is propor-
tional to the difference, �ej 2 �ei, in the mean environmental
response between the rare and common species. Intui-
tively, when the rare species benefits more, on average,
from the environmental conditions (�ej 1 �ei), its invasion
growth rate is larger. The sign of the second term in
equation (7) depends on the concavity of log fitness with
respect to the environmental response variable. When
the log fitness function is concave at this point, the sec-
ond term contributes positively to the invasion growth if
the rare species exhibits less variation in its environmen-
tal response (j2

i ! j2
j ). This second term corresponds to

the effect of nonlinear averaging (Chesson 1994). Namely,
there is a reduction (respectively, increase) in the invasion
growth rate due to the concavity (respectively, convexity)
of the log fitness function.
Differences in the variation of the environmental re-

sponses also impact the covariance between the density
of common species and difference in the environmental
responses, that is, the third term of equation (7). Specif-
ically, a refinement of expression (6) shows that (deriva-
tion is provided in the appendix)

Cov[Ĉ i, Ê j 2 Ê i] p 2k#r#ji(ji � tjj), ð8Þ
where k is a positive constant. To better understand this
expression, I partition it into the sum of two terms: a com-
munity average term and a species-specific term (Chesson
2018). The community average term equals the average of
the covariances Cov[Ĉ1, Ê2 2 Ê1] and Cov[Ĉ2, Ê1 2 Ê2]
and contributes equally to both species invasion growth
rates. This community average equals

2k#r#

�
j2
1 1 j2

2

2
2 t

ffiffiffiffiffiffiffiffiffi
j2
1j

2
2

p �
:
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Figure 2: Positively autocorrelated fluctuations in fecundity
(A) and negative autocorrelated fluctuations in survival (B) mediate co-
existence. Shown are numerically computed invasion growth rates rj
as a function of the temporal autocorrelation r for competing spe-
cies. In A, the fitness function f is given by equation (3), and there
are fluctuations in fecundity. In B, the fitness function is given by
equation (4) with fluctuations in survival. Different curves corre-
spond to different levels of cross correlation t, where competitors
only differ demographically if t ! 1. For positive invasion growth
rates, the competitors coexist (stochastic persistence). For negative
invasion growth rates, each competitor is excluded with positive
complementary positive probabilities (stochastic bistability). Pa-
rameters: a1 p a2 p 1 and (Z1(t),Z2(t)) is normally distributed
with standard deviation 0.3 for both panels. For A, s p 0:9 and
ē p ln 2. For B, ē p 0 and l p 2.
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As the arithmetic mean (j2
1 1 j2

2)=2 is greater than the
geometric mean (j2

1j
2
2)

1=2, the community average term
has the opposite sign of the sign of the autocorrelation
r. On the other hand, the species-specific term equals

k#r(j2
j 2 j2

i )

2
:

Thus, the species-specific contribution to Cov[Ĉ i, Ê j 2 Ê i]
has the same sign as the autocorrelation r for the species
with larger variance and the opposite sign for the species
with smaller variance. This asymmetrymay benefit or harm
the species with the smaller variance. For example, if there
is populationbuffering andpositively autocorrelatedfluctu-
ations, then the species with the smaller variance benefits
more from the storage effect than the species with the larger
variance. Alternatively, if there is negative population buff-
ering and negative autocorrelated fluctuations, then the
species with the larger variance benefits more from the
environment-competition covariance.
To illustrate these analytical results, figure 3 shows inva-

sion growth rates rj with fitness function (3) with fluctua-
tions in fecundity. In figure 3A, the species exhibit only dif-
ferences in their mean environmental response and have
negatively correlated environmental responses.With small
differences in the mean environmental response, suffi-
ciently negative autocorrelations result in bistability, inter-
mediate autocorrelations result in the specieswith the larger
mean environmental response excluding the other species,
and sufficiently positive autocorrelations mediate coexis-
tence. When the difference in mean environmental re-
sponse is large, sufficiently positive autocorrelations medi-
ate coexistence; otherwise, the species with the lower mean
environmental response is excluded. In figure 3B, one spe-
cies has a higher mean environmental response (�e1 1 �e2)
but also experiences greater variability in its environmental
response (j1 1 j2). When the difference in variation is suf-
ficiently low, species 1 excludes species 2 unless temporal
autocorrelation is sufficiently high. In contrast, when the
difference in variation is sufficiently high, species 2 excludes
species 1 unless temporal autocorrelation is sufficiently high.
This reversal in fates stems from the reductionof r1 as a result
of greater environmental variation simultaneously increas-
ing the negative effect of nonlinear averaging and reducing
the strength of the storage effect.
Discussion

Hutchinson (1961, p. 138) wrote that “the diversity of the
plankton was explicable primarily by a permanent failure
to achieve equilibrium as the relevant external factors
changes.” It was not until 30 years later that Peter Chesson
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developed a theoretical framework for precisely identifying
fluctuation-dependent mechanisms for coexistence (see,
e.g., Chesson 1983, 1988, 1994; Chesson and Warner 1981),
including the storage effect. The storage effect stabilizes
coexistence when (i) there is a positive correlation be-
tween the environmental response of each species and the
competition experienced by that species, (ii) there are
species-specific environmental responses, and (iii) there
is buffered population growth in which species are less
sensitive to competition in years of poor environmental
conditions. In serially uncorrelated environments, the first
condition requires that there is a direct and immediate
impact of the environmental response on the strength of
competition. This occurs, for example, in annual popula-
tions with year to year variation in germination rates: when
more seeds germinate, more plants compete for limiting
resources. This direct and immediate impact, however, does
not occur when maximal yield or adult survival varies, as in
the models considered here. However, when the temporal
fluctuations in these demographic rates are autocorrelated,
the analysis presented here reveals that the environment-
competition covariance can still occur in these fundamental
demographic parameters. Furthermore, these autocorre-
lated fluctuations highlight how another, underappreciated
stabilizing mechanisms arises when conditions (i) and
(iii) simultaneously do not hold.
Hutchinson (1961) hinted at temporal autocorrelations

as a stabilizing mechanism when he wrote, “equilibrium
wouldnever be expected innaturewhenever complete com-
petitive replacement of one species by another occurred in
a time (tc), of the same order, as the time (te) taken for a
significant seasonal change in the environment.”As com-
petitiveexclusion typically takes several generations,Hutch-
inson’s quote implies that coexistence requires the shifts
in environmental conditions favoring differing species
to take several generations. Thus, the environmental con-
ditions must be positively autocorrelated over several
generations. Consistent with this suggestion, I show that
when there is population buffering (i.e., log fitness is sub-
additive) and there are species-specific environmental
responses, positively autocorrelated fluctuations in envi-
ronmental conditions yield a storage effect. Namely, con-
dition (i) is satisfied as better years for one species tend to be
preceded by better years for this species and, therefore, tends
to lead to higher densities (greater competition) in the
focal year. The strength of this environment-competition
covariance depends on the degree that competitive commu-
nities are biotically saturatedwith individuals. For saturated
communities, such as those modeled by Chesson’s lottery
model (Chesson and Warner 1981) and Hubbell’s neutral
model (Hubbell 2001), autocorrelated fluctuations cannot
generate this covariance when one competitor is rare;
the abundance of the common species remains relatively
constant. In contrast, for less saturated communities,
which are common (Houlahan et al. 2007), fluctuations
in environmental conditions can lead to fluctuations in
the abundance of the common species and, when positively
autocorrelated, lead to a positive environment-competition
covariance. Our findings about positive autocorrelations
generating a storage effect are consistent with three prior
studies (Jiang and Morin 2007; Li and Chesson 2016;
Schreiber et al. 2019). Jiang andMorin (2007) manipulated
temporal fluctuations experienced by two species of cil-
iated protists competing for bacterial resources. These
temperature fluctuations had large effects on the intrinsic
growth rates of the two species, consistent with the fluctu-
ating fecundity model considered here. When the tem-
perature fluctuations were temporally uncorrelated, their
experimental results suggested that resource partitioning
and temperature-dependent competitive effects lead to
coexistence, not a storage effect. In contrast, when tem-
perature fluctuations were positively autocorrelated, their
experimental results suggested that resource partitioning
and the storage effect lead to coexistence. Alternatively,
for continuous-time models of competing consumers
whose attack rates are driven by environmental fluctua-
tions, Li and Chesson (2016) found that fast resource de-
pletion generates a positive environment-competition co-
variance and, thereby, can promote coexistence. Although
not explicitly stated by Li and Chesson (2016), this posi-
tive environment-competition covariance arises from at-
tack rates being positively autocorrelated at the timescale
of the resource depletion. Finally, using models with a
symmetric version of fitness function (3), Schreiber et al.
(2019) demonstrated numerically that the invasion growth
rates rj increase with positive autocorrelations. However,
they did not analyze this numerical trend.
Autocorrelated fluctuations also can lead to an alter-

native stabilizing mechanism when (i0) there is a nega-
tive covariance between environment and competition,
(ii) there are species-specific environmental responses, and
(iii0) species are less sensitive to competition in years of
good environmental conditions. Condition (iii0) can arise
when adult survival fluctuates. Condition (i0) occurs when
fluctuations in survival are negatively autocorrelated, as
populations densities are higher in years following higher
survival but survival in the following year tend to be lower.
My analytical and numerical results show, however, that
the strength of this stabilizing effect is weaker for a given
magnitude of negative autocorrelation than the strength
of the storage effect for the same magnitude of positive
autocorrelation. Negatively autocorrelated environments
can arise in a variety of ways (Metcalf and Koons 2007).
For example, approximately 5% of sites analyzed by Sun
et al. (2018) exhibit negatively autocorrelated rainfall. Adler
and Levine (2007) found that species richness in central
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North American grasslands increased most in wet years
that followed dry years. Alternatively, models and empiri-
cal studies show that overcompensatory or delayed density-
dependent feedbacks can generate negatively autocorrelated
fluctuations in densities (May 1976; Tilman and Wedin
1991; Crone and Taylor 1996; Gilg et al. 2003). If these
fluctuations in densities occur in an herbivore, pathogen,
or predator, then they can generate negatively autocorre-
lated fluctuations in survival of competing plants, hosts,
or prey. Finally, competing species that exhibit two to
three generations per year may experience negative auto-
correlations in seasonal environments (Metcalf and Koons
2007).
Autocorrelated fluctuations in survival or fecundity

can generate alternative stable states and drive complex
shifts in ecological outcomes. Alternative stable states arise
as a stochastic priority effect: either species has a nonzero
probability of being excluded, but the species at initially lower
frequencies is more likely to be excluded. For small differ-
ences in mean fitness, stochastic induced alternative states
arise whenever buffered populations experience a nega-
tive environment-competition covariance or whenever un-
buffered populations experience a positive environment-
competition covariance. Chesson (1988) highlights this
possibility for annual plants with fluctuating seed survival,
but his observation appears to be underappreciated in the
priority effects literature (Fukami 2015; Fukami et al.
2016). Shifts in temporal autocorrelations also generate
complex shifts in ecological outcomes when one species
has an inherent competitive advantage over the other,
such as a highermean environmental response or less var-
iability in their environmental response. Under these
circumstances, shifts from negative to positive temporal
autocorrelations can result in shifts from a stochastic pri-
ority effect to competitive exclusion to coexistence (fig. 3).
In conclusion, temporally autocorrelated environmen-

tal fluctuations indirectly generate a covariance between
environmental conditions and the strength of competi-
tion. When this covariance is positive and there is popu-
lation buffering, this leads to a storage effect (Chesson
1994, 1988). As positive autocorrelations are seen inmany
climatic variables, accounting for these autocorrelations
in data-driven models (Chu and Adler 2015; Ellner et al.
2016, 2018) likely will lead to more empirically based
examples of the storage effect. In contrast, when there is
a negative environment-competition covariance, an alter-
native stabilizing mechanism to the storage effect arises
provided species are less sensitive to competition in years
where environmental conditions are favorable. As there
are simple, ecologically plausible conditions that generate
this alternative stabilizing mechanism, it will be exciting
to see whether empirically based demonstrations will be
found.
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Appendix from S. J. Schreiber, “Positively and Negatively
Autocorrelated Environmental Fluctuations Have Opposing
Effects on Species Coexistence”
(Am. Nat., vol. 197, no. 4, p. 405)

In this appendix, I provide the mathematical details of the analysis of the deterministic and stochastic versions of model
(1). Define the new coordinate system xi p aini, in which model (1) becomes

xi(t 1 1) p xi(t)f (x1(t)1 x2(t),�ei 1 Dei(t)),Dei(t 1 1) p rDei(t)1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 r2

p
Zi(t 1 1), ðA1Þ

where Zi(1), Zi(2), ::: are a sequence of independently and identically distributed (i.i.d.) random variables with mean 0,
variance j2

i , and cross correlation t. Throughout this analysis, I assume that f is a continuous positive function, that
C↦f (C, e) is a decreasing function for all e, that e↦f (C, e) is an increasing function for all C, and that C↦Cf (C, e) is
an increasing bounded function. The first two assumptions ensure that fitness depends continuously on competition
and environment, decreases with competition, and increases with the environmental variable. The third assumption
corresponds to compensating density dependence and populations remaining bounded. A classic example of such a fitness
function is the Beverton-Holt function with survival; that is, f (C, e) p l=(11 C)1 s, where the maximal fitnesses l or
the survivorships s are functions of e. Finally, I assume that Zi(t) take values in a compact set and that jrj ! 1. Collectively,
these assumptions imply that the dynamics of equation (A1) are dissipative; that is, there is a compact set in K ⊂ [0,∞)2#
R2 such that nonnegative solutions of equation (A1) eventually enter and remain in K for sufficiently large t.

Below, I first analyze the deterministic dynamics of equation (A1), that is, when Dei(t) p 0 for all t. This analysis
shows that there are three possible competitive outcomes: species 1 excludes species 2, species 2 excludes species 1, or
neutral coexistence, in which the dynamics converge to a line of equilibria. Next, I analyze the stochastic dynamics of
equation (A1) in three steps. First, using results from Benaïm and Schreiber (2009), I provide a condition that ensures that
each species can persist in isolation. When this condition holds, the dynamics of the environmental variables and each
species converges to a unique stationary distribution; let (bxi,cDe1,cDe2) be random variables with this stationary
distribution. When this condition does not hold, the species asymptotically converges to extinction with probability 1. For
the remainder of the stochastic analysis, I assume that the condition for each species persisting holds. Under this
assumption, I use results from Benaïm and Schreiber (2019) to characterize coexistence and exclusion using the invasion
growth rates rj. Finally, I use a diffusion type of approximation to derive the approximations for the invasion growth rates
rj presented in the main text.
Deterministic Analysis

The model assumptions imply that equation (A1) is a strictly monotone, planar map with respect to the
competitive ordering (see, e.g., Smith 1998). Each species persists individually if f (0,�ei) 1 1 for i p 1, 2. Assume
that this condition holds for each species. Then there are three cases to consider. First, assume that �e1 1 �e2. Define
l p max(x1,x2)∈Kf (x1 1 x2,�e2)=f (x1 1 x2,�e1), which is strictly less than 1 as �e1 1 �e2, e↦f (C, e) is a strictly increasing
continuous function, and K is compact. Given any solution (x1(t), x2(t)) to equation (A1) with x1(0) 1 0, we get
x2(t)=x1(t) ≤ lt(x2(0)=x1(0)). As x1(t) is uniformly bounded (i.e., (x1(t), x2(t)) ∈ K), x2(t) converges to zero as t → ∞.
Similarly, if �e2 1 �e1, species 2 excludes species 1. Finally, consider the case that �e1 p �e2. Then x1(t)=x2(t) p x1(0)=x2(0)
for all time whenever x2(0) 1 0. Namely, the relative frequency of either species does not change over time. Moreover, as
y(t) p x1(t)1 x2(t) satisfies y(t 1 1) p y(t)f ( y(t),�e1), which a strictly monotone map with a unique positive equilibrium
y* 1 0, x1(t)1 x2(t) converges to the y* as t → ∞. Hence, xi(t) converges to xi(0)y*=(x1(0)1 x2(0)) as t → ∞ for i p 1, 2.
Thus, there is a globally stable line of equilibria given by f( y*p, y*(12 p)): 0 ≤ p ≤ 1g.
General Stochastic Analysis

Define g(x, e) p log f (x, e) and assume jrj ! 1. As the dynamics of Dei are given by a multivariate autoregressive process
where the linear term is contracting (i.e., jrj ! 1) and Z(t) are uniformly bounded, Dei(t) converge to a unique stationary
1
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distribution (see, e.g., Schreiber and Moore 2018). For each species i in isolation of the other species, their per capita
growth rate at low densities is E[g(0,�ei 1 cDei)] 1 0. When this invasion growth rate is positive and xi(0) 1 0, theorem 1 in
Benaïm and Schreiber (2009) implies that solutions ((xi(t),De1(t),De2(t)) for the species i subsystem with xi(0) 1 0
converge to a unique stationary distribution. Let (bxi,cDe1,cDe2) be random variables with this stationary distribution. In
contrast, if E[g(0,�ei 1 cDei)] ! 0, proposition 1 in Benaïm and Schreiber (2009) implies that xi(t) converges to zero with
probability 1. From the rest of the stochastic analysis, assume that E[g(0,�ei 1 cDei)] 1 0 for both species i p 1, 2.

The invasion growth rate of species j ( i when species i is at its stationary distribution equals

rj p E[g(bxi,�ej 1 cDej)]:

Theorem 1 from Benaïm and Schreiber (2019) implies that the two species coexist (in the sense of stochastic persistence)
whenever r1 1 0 and r2 1 0. In contrast, if rj ! 0, then theorem 3 from Benaïm and Schreiber (2019) implies that species j
becomes extinct with high probability whenever its initial density is sufficiently low. Under suitable accessibility
assumptions (for definitions, see Benaïm and Schreiber 2019), stronger conclusions hold when rj ! 0. In particular, if r1 1
0 1 r2 (respectively, r2 1 0 1 r1), then species 1 excludes species 2 with probability 1 (respectively, species 2 excludes
species 1) whenever x1(0) 1 0 (respectively, x2(0) 1 0). Alternatively, if r1 ! 0 and r2 ! 0, then either species, with
complementary positive probabilities, becomes extinct whenever both are initially present (i.e., a stochastic priority effect).
Diffusion Scaling to Approximate rj
For any ε 1 0, assume that (i) Zi(t) p εhi(t) where hi(t) are i.i.d. with mean 0, variance vi, and E[h1(t)h2(t)] p t and that
(ii) �ei p �e 1 ε2ai. To ensure each species persists in the absence of the other, assume that the invasion growth rate g(0,�e)
is positive. Then there exists x* 1 0 such that g(x*,�e) p 0. The term x* corresponds to the single-species equilibrium
density in the absence of fitness differences and environmental fluctuations. Assume that g(x, e) is three times
continuously differentiable, and let gx, ge, gxe, and so on denote the partial derivatives (∂g=∂x)(x*,�e), (∂g=∂e)(x*,�e),
(∂2g=∂x∂e)(x*,�e), and so on evaluated at (x*,�e).

Consider species i as the common or resident species and j ( i as the rare or invading species. Proposition 1(iii) from
Benaïm and Schreiber (2019) implies that the invasion growth of i, E[g(bxi,�ei 1 cDei)], at its stationary distribution equals
zero. Thus, taking a Taylor expansion and defining cDxi p bxi 2 x* yields

0 p E[g(bxi,�ei 1 cDei)] p g(x*,�e)1 gxE[cDxi]1 geE[ε2ai 1 cDei]1
gxx

2
E[(cDxi)

2]1
gee

2
E[(ε2ai 1 cDei)

2]

1 gxeE[(cDxi)(ε2ai 1 cDei)]1 O(ε3) p gxE[cDxi]1 ε2
�
geai 1

gee

2
vi

�
1

gxx

2
E[(cDxi)

2]1 gxeE[cDxi
cDei]1 O(ε3),

ðA2Þ

as g(x*,�e) p 0 due to the definition of x*, E[cDei] p 0, E[(cDei)
2
] p vi and E[cDxiε2ai] p O(ε3).

Similarly, we get

rj p E[g(bxi,�ej 1 cDej)] p g(x*,�e)1 gxE[cDxi]1 geE[ε2aj 1 cDej]1
gxx

2
E[(cDxi)

2]1
gee

2
E[(ε2aj 1 cDej)

2]

1 gxeE[(cDxi)(ε2aj 1 cDej)]1 O(ε3) p gxE[cDxi]1 ε2
�
geaj 1

gee

2
vj

�
1

gxx

2
E[(cDxi)

2]1 gxeE[cDxi
cDej]1 O(ε3):

ðA3Þ

Subtracting equation (A2) from equation (A3) yields

rj p ε2
�
ge(aj 2 ai)1

gee

2
(vj 2 vi)

�
1 gxeE[cDxi(cDej 2 cDei)]1 O(ε3): ðA4Þ

To get an explicit expression for E[cDxi(cDej 2 cDei)], one can approximate the dynamics of xi as a first-order
autoregressive process by linearizing equation (A1) at (xi, e1, e2) p (x*,�e,�e). To this end, define F(x, e) p xf (x, e) and Fx,
Fe as the partial derivatives (∂F=∂x)(x*,�e), (∂F=∂e)(x*,�e). Then, the first-order autoregressive approximation of
equation (A1) is

Dxi(t 1 1)p FxDxi(t)1 Fe(ε2ai 1 Dei),
Dei(t 1 1)p rDei(t)1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 r2

p
Zi(t),

Dej(t 1 1)p rDej(t)1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 r2

p
Zj(t):

ðA5Þ
2
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Equivalently, defining z p (Dxi,Dei,Dej),

z(t 1 1) p

"Fx Fe 0
0 r 0
0 0 r

#
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
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:

The covariance matrix of z(t), Cov[ẑ], at stationarity (see, e.g., Schreiber and Moore 2018) satisfies

vec(Cov[̂z]) p (Id2 A⊗A)21vec(Cov[b(t)]),

where vec(∗) is a column vector given by concatenating the columns of its argument ∗ and ⊗ denotes the Kronecker
product. Carrying out this calculation yields the approximations

E[cDxi
cDei] p

Ferj2
1

Fxr3 2 r2 2 Fxr1 1
and E[cDxi

cDej] p
Fertj1j2

Fxr3 2 r2 2 Fxr1 1
:

To see that the denominator of these expressions is positive for jrj ! 1, define h( y) p yr(r2 2 1)2 r2 1 1. As Fx ∈ (0, 1)
(i.e., the equilibrium is stable as the dynamics are compensatory), one needs to only consider h( y) for y ∈ (0, 1). The
minimum of h( y) occurs either at y p 1 or at y p 2 1 or at 0 ! y ! 1, where h0( y)p 0. For jrj ! 1, h0( y)p r(r2 2 1) p
0 only when r p 0, in which case h(y) p 1 1 0. As h(0) p 12 r2 1 0 for jrj ! 1 and h(1) p r3 2 r2 2 r1 1 1 0 for
jrj ! 1, it follows that h(y) 1 0 for y ∈ (0, 1) whenever jrj ! 1.

Define

k(r) p
Fe

Fxr3 2 r2 2 Fxr1 1
1 0:

Then

rj p ge(�ej 2 �ei)1
gee

2
(j2

j 2 j2
i )1 k(r)gxer(tjj 2 ji)ji 1 O(ε3), ðA6Þ

as claimed in the main text. Let H(r) p rk(r). Then

H 0(r) p Fe

r2(12 2Fxr)1 1

(Fxr3 2 r2 2 Fxr1 1)2
:

As 0 ! Fx ! 1, the numerator of H0(r) is positive for all r ∈ (21, 1). Therefore, as claimed in the main text,
H(r) is an increasing function of r. Finally, consider r 1 0. Then k(2r) ! k(r) if and only if Fxr3 2 r2 2 Fxr1 1 !

2Fxr3 2 r2 1 Fxr1 1. This occurs if and only if r3 ! r, which is true whenever r ∈ (0, 1). Thus, jrk(r)j 1 j2 rk(2r)j
for any r ∈ (0, 1), as claimed in the main text.
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