
 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 J

un
e 

20
21

 

rstb.royalsocietypublishing.org
Research
Cite this article: Park M, Loverdo C, Schreiber

SJ, Lloyd-Smith JO. 2013 Multiple scales of

selection influence the evolutionary emergence

of novel pathogens. Phil Trans R Soc B 368:

20120333.

http://dx.doi.org/10.1098/rstb.2012.0333

One contribution of 18 to a Discussion

Meeting Issue ‘Next-generation molecular

and evolutionary epidemiology of

infectious disease’.

Subject Areas:
evolution, ecology, computational biology,

genetics, health and disease and

epidemiology, theoretical biology

Keywords:
emerging diseases, pathogen evolution,

adaptation, branching processes

Author for correspondence:
Miran Park

e-mail: miran.park@ucla.edu
& 2013 The Author(s) Published by the Royal Society. All rights reserved.
Multiple scales of selection influence
the evolutionary emergence of
novel pathogens

Miran Park1, Claude Loverdo1, Sebastian J. Schreiber2

and James O. Lloyd-Smith1,3

1Department of Ecology and Evolutionary Biology, University of California, 610 Charles E. Young Dr. South,
Los Angeles, CA 90095, USA
2Department of Evolution and Ecology and Graduate Group in Applied Mathematics, University of California,
Davis, CA 95616, USA
3Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA

When pathogens encounter a novel environment, such as a new host species

or treatment with an antimicrobial drug, their fitness may be reduced so that

adaptation is necessary to avoid extinction. Evolutionary emergence is the

process by which new pathogen strains arise in response to such selective

pressures. Theoretical studies over the last decade have clarified some deter-

minants of emergence risk, but have neglected the influence of fitness on

evolutionary rates and have not accounted for the multiple scales at which

pathogens must compete successfully. We present a cross-scale theory for

evolutionary emergence, which embeds a mechanistic model of within-

host selection into a stochastic model for emergence at the population

scale. We explore how fitness landscapes at within-host and between-host

scales can interact to influence the probability that a pathogen lineage

will emerge successfully. Results show that positive correlations between

fitnesses across scales can greatly facilitate emergence, while cross-scale con-

flicts in selection can lead to evolutionary dead ends. The local genotype

space of the initial strain of a pathogen can have disproportionate influence

on emergence probability. Our cross-scale model represents a step towards

integrating laboratory experiments with field surveillance data to create a

rational framework to assess emergence risk.
1. Introduction
Emerging infectious diseases impose major health and economic burdens world-

wide, and arise through a range of ecological and evolutionary mechanisms

[1–3]. A recurring theme in many emergence events is that a pathogen lineage

is exposed to a novel environment (e.g. a new host species or an antimicrobial

drug) in which its fitness is reduced. When the initial pathogen genotype has fit-

ness below the replacement level, the pathogen lineage will go extinct unless it

adapts quickly enough to improve its fitness and successfully invade this new

environment (e.g. new host species) or escape a lethal selection pressure (e.g.

drug or vaccine) [4]. Adaptation can occur at several evolutionary stages and

through different mechanisms, and key mutations may occur in the reservoir or

the novel environment [5]. Here we focus on evolution in the novel environment,

and we call this process evolutionary emergence. There is growing evidence that

such adaptation has played an important role in host jumps of viruses such as

influenza and severe acute respiratory syndrome coronavirus (SARS-CoV) [5,6].

Studying the evolutionary dynamics of this process, and linking theory to current

empirical efforts that characterize the basic determinants of viral fitness, is an

important frontier in understanding conditions that favour pathogen emergence.

Developing theoretical tools allows us to assess possible emergence threats and

what ecological and evolutionary mechanisms facilitate emergence. The acute

need for such progress is evident from the recent controversy surrounding the

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2012.0333&domain=pdf&date_stamp=2013-02-04
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reports that just a few mutations are sufficient to enable

airborne transmission of highly pathogenic H5N1 avian

influenza virus among mammals [7–9].

Empirical research on pathogen evolution is defining the

dimensions of the problem of evolutionary emergence.

Notable steps have been taken towards mapping the fitness

landscapes associated with pathogen emergence events, by

measuring the fitness (or a proxy for fitness) of pathogen gen-

otypes and effects of pertinent mutations [10]. Two studies

have mapped the fitness landscapes associated with develop-

ment of drug resistance in Escherichia coli and Plasmodium
falciparum genes, by phenotyping all intermediate genotypes

bearing some subset of the resistance mutations [11,12].

Another recent study has extended this comprehensive

approach to a viral host jump, studying capsid protein

mutations in canine parvovirus [13]. A related strategy, taken

by the H5N1 influenza studies cited above [7,8] and across

the literature for other emerging viruses such as SARS-

CoV [5], is to characterize several traits associated with fitness

for a more limited set of genotypes that comprise a putative

pathway to emergence. A powerful complementary approach

has tracked viral evolution in vivo by measuring changes in

genotype frequencies in the course of experimental infection

and transmission studies [7,8,14–16]. Ultimately, the aim is

to connect these various experimental approaches to genotype

frequencies detected in field surveillance, either before [17] or

after [18,19] an emergence event occurs.

A conspicuous pattern arising from empirical studies is

that measures of pathogen fitness (or fitness components)

can be taken at different biological scales. For instance,

recent studies of H5N1 influenza report cell receptor binding,

viral titres in different tissues, in vivo replication kinetics, air-

borne transmission efficiency, and time to host death for a

range of viral genotypes [7,8]. These diverse empirical

measures of fitness support the need to distinguish within-

host fitness, describing the pathogen’s ability to grow within

infected individuals, from between-host fitness, or transmissi-

bility. Given a set of pathogen genotypes, we must define

separate fitness landscapes corresponding to within-host and

between-host fitness, i.e. each genotype has a fitness at both

scales. This aligns with current research in other domains of

infectious disease dynamics [7,8,16], and opens the possibility

of conflicts, correlations or other interactions among selective

forces acting at multiple scales, which can profoundly

influence evolutionary outcomes [20–22].

The fitnesses of particular pathogen genotypes at within-

host and between-host scales are not always positively

correlated. Higher pathogen loads often lead to higher rates

of transmission [23–25], in which case there may be positive

correlation between fitnesses at the two scales. However, as

explored in the extensive literature on virulence evolution,

various costs can cause total transmissibility to decline if

the pathogen load gets too high [26,27]. Different pathogen

life histories and tissue tropisms may also influence the

relationship between fitnesses across scales. For bloodborne

pathogens, we would expect a positive correlation between

pathogen load and infectiousness; indeed this is observed

for HIV-1 set-point viral load, although a concomitant effect

on the duration of infection causes total transmissibility to

peak at intermediate viral load [23]. Thus, the correlation

between within-host fitness (as reflected by viral load) and

between-host fitness can be positive or negative. Similarly,

pathogens that infect numerous tissue types, or that involve
intermediate hosts or environmental stages in transmis-

sion, can exhibit complex relationships between fitnesses at

the two scales. A well-known and relevant example is the

tissue tropism of influenza virus, where higher binding affi-

nity for different conformations of sialic acid on epithelial

cells leads viruses to target the upper or lower respiratory

tract. A viral mutation that increases affinity for the a-2,3

conformation might increase within-host replication while

decreasing transmissibility by moving the infection deeper

into the lung [28]. Such tissue tropism is thought to be a cru-

cial determinant of host adaptation for influenza [7,8], so it is

possible that cross-scale conflicts in selection play an impor-

tant role in evolutionary emergence. We now know that

circulating strains of H5N1 avian influenza are within a few

mutations of genotypes that transmit much more efficiently

among mammals [7,17,29]. Many mammals (human and

otherwise) have been infected with H5N1 influenza—why

have not these transmissible genotypes arisen, given that

they certainly would confer a fitness benefit to the virus in

mammal populations? One possible explanation is that

these transmissible genotypes (or intermediate genotypes

en route to them) are less fit at the within-host scale so they

might not rise to high enough frequencies within hosts to

realize their transmission advantage.

Translating our growing empirical knowledge of

pathogen phenotypes into an improved understanding

of emergence risks will require analytical methods to inte-

grate the key mechanisms across scales. Theoretical study of

pathogen emergence has previously focused on evolutionary

invasion at the host population scale: an introduced pathogen

exhibits weak transmission in the novel host environment,

and must mutate to higher transmissibility before the

transmission chain dies out. Stochastic models such as

multi-type branching processes have been used to compute

the probability of emergence for simple genotype spaces

and corresponding (between-host) fitness landscapes [4,30].

These studies have yielded important insights, showing

that even when initial transmissibility is too low to start

an epidemic, higher values of transmissibility (bringing the

pathogen closer to the threshold for sustained spread)

lead to greatly increased probability of evolutionary emer-

gence [30]. Subsequent work has explored the influence of

epidemiological complexities [31–33], but key elements

of the evolutionary dynamics have not yet been addressed.

Crucially, the model parameters describing evolutionary

change of the pathogen have been assumed not to depend

on the fitnesses of the genotypes involved. Within-host fit-

ness, and the consequent action of within-host selection,

has not been included. André & Day [34] contributed the

valuable extension of considering selective sweeps during

the course of an individual’s infection, but similar to the pre-

vious work the rate of fixation of new mutants was assumed

not to depend on the strength of selection within hosts. These

omissions separate the current theory from the empirical

evidence, which largely focuses on within-host fitness [5],

and overlook the fact that selection acts most immediately

within a host, as pathogen genotypes compete with each

other for target cells or other resources or to escape the

immune system [35–37].

We present a theoretical framework to study how the

evolutionary emergence of pathogens is influenced by selec-

tion at within-host and between-host scales. Our aim is to

create a tractable cross-scale model from which analytical
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insights and biological intuition can be derived. We represent

the between-host scale using multi-type branching processes

as in previous models [30,34]. However, instead of assuming

equal rates of mutation between all pairs of genotypes, we

introduce a sub-model for within-host selection based on

population genetic theory. In particular, we follow the

approach used in recent analyses of mutational trajectories

in empirical fitness landscapes [11,12,38] and apply the

strong selection, weak mutation (SSWM) limit to derive a

compact representation of adaptive evolution [39]. Using

this framework, we analyse how fitness landscapes at

within-host and between-host scales can interact to influence

the probability that a pathogen lineage will emerge. Here we

focus on the mechanisms involved in host jumps of patho-

gens, because our model describes invasion of a pathogen

into a large susceptible population; later we discuss how

this model could be applied to other emergence situations

such as developing resistance to an antimicrobial drug.

At the within-host scale, selection acts on relative fitnesses of

adjacent genotypes, with strong selection leading to rapid fix-

ation of new beneficial mutants. At the between-host scale,

we consider a stochastic transmission framework that depends

on the absolute fitness of neighbouring genotypes, where indi-

viduals are infected with a particular genotype. We explore

two scenarios of simple genotype spaces, illustrating basic

principles of multi-scale selection in this context, and exploring

the potential for emergence to be prevented by evolutionary

conflicts across scales. We hope that this cross-scale mechanis-

tic model begins to bridge the gap between the growing body

of empirical data from laboratory experiments and pathogen

sequencing studies, and large-scale public health questions

about emergence risk. We conclude by discussing necessary

extensions and possible links to empirical studies.
2. A cross-scale model of evolutionary
emergence

(a) Defining the system
Studying the evolutionary dynamics of pathogen populations

at multiple scales can lead to substantial complexity, so it is

necessary to make simplifying assumptions. Following earl-

ier work [30,34], we assume that each infected host has a

single pathogen genotype at any point in time, and we

characterize the host individual by this type. Parameters are

marked with a subscript or superscript i corresponding to

the pathogen genotype in question. We analyse evolutionary

dynamics on a defined genotype space, which consists of a

set of pathogen genotypes and the pathways of mutation

that connect them. A mutation is broadly defined as a

change at a specific locus in the genome giving rise to a

new genotype; this can include point mutations, insertions,

deletions or other mechanisms of genetic change. Each patho-

gen genotype has two measures of fitness associated with it,

corresponding to the within-host and between-host scales;

these define two fitness landscapes over the genotype

space. At the between-host scale, the fitness of the pathogen

corresponds to its ability to transmit through the population.

At the within-host scale, the fitness of the pathogen describes

how well it replicates within a host. For our analyses, we

create case studies of fitness landscapes, and explore how

they interact to drive pathogen evolution.
The between-host fitness of genotype i is given by the

reproductive number, R0
(i), which is the average number of

secondary infections caused by a type i host in a completely

susceptible population. For our evolutionary emergence pro-

blem, we consider a pathogen that is initially maladapted to

the novel environment, i.e. genotype 1 has R0
(1) , 1. Such a

pathogen causes short chains of transmission but goes extinct

with certainty if it does not evolve. Through mutation and

selection, which we treat as within-host processes, new geno-

types can arise and fix in some host individuals. Eventually,

the pathogen lineage may reach an ‘emergence genotype’

with R0
(i) . 1, which has a non-zero chance of successfully

invading the new host population.

For our numerical work, we consider simple scenarios for

which the initial and intermediate genotypes always have

R0
(i) , 1, and there is only one emergence genotype. We calcu-

late the probability that the emergence genotype arises and

successfully invades the host population, P(emergence),

using techniques described below. Calculating P(emergence)

allows us to compare interactions between different fitness

landscapes, lending an understanding of general trends that

arise as selection acts across scales.

(b) Between-host transmission dynamics
Building on existing literature in evolutionary emergence [34],

we use a continuous-time multitype branching process to

model the stochastic dynamics of transmission, recovery

and genotype change at the population scale. The model

tracks the population dynamics of infected individuals,

which are classified according to the pathogen genotype of

their infection. We assume a well-mixed homogeneous popu-

lation in which the number of susceptibles is large enough

that it is not significantly depleted by the limited number

of cases that occur before pathogen emergence.

Each infected host of type i infects other host individuals

at a constant rate bi, giving rise to an additional infected host

of the same type, and ceases to be infectious (through recov-

ery or death) at a rate di. The reproductive number for type i
is R0

(i) ¼ bi/di. Within-host evolutionary processes cause the

dominant genotype to change from type i to type j at a rate

mi,j during the course of an individual’s infection, where

mi,j ¼ 0 for a genotype j that is more than one mutational

step away from genotype i. During a small time interval of

length Dt, these events occur with approximate probabilities

biDt, diDt and mi,jDt, respectively.

(c) Within-host evolutionary dynamics
Previous models of evolutionary emergence assume that sub-

stitution rates do not depend on the fitnesses of the

genotypes involved. Here, we replace this assumption with

a mechanistic model for within-host evolution, which we

embed within the branching process framework used for

population-scale dynamics. To represent the key population

genetic mechanisms in a compact manner, we use the

SSWM paradigm [39].

In the SSWM limit, strong selection means that only ben-

eficial mutations are considered, and mutation rates are

sufficiently low that simultaneous mutation events can be

neglected. The simplicity of the SSWM limit arises because

beneficial mutations go to fixation much faster than new

mutations arise, so at any point in time the population is

essentially fixed for some genotype. This fixed genotype
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can only be displaced by pathogen genotypes with higher

within-host fitness.

The SSWM assumption allows changes in the infectious

genotype within the host to be modelled as a continuous

time Markov chain [39]. We begin by defining the absolute

within-host fitness of a particular genotype i as wi. The

relationship between the absolute within-host fitness of gen-

otype i and that of a different genotype j is wj ¼ (1 þ si,j)wi,

where si,j is the selection coefficient of the genotype j invad-

ing a system with genotype i at its equilibrium. If the

current genotype within the host is type i and a substitution

occurs, the probability that type j fixes next is given by

si;j=
P

k[Mi
si;k, where Mi is the set of genotypes that are a

single mutational step away from genotype i. The waiting

time before the next jump occurs is dependent on the size

of the virus population, N, and the mutation rate, m, and is

exponentially distributed with mean proportional to

1=ðNm
P

k[Mi
si;kÞ [39]. Therefore, in the SSWM limit, we can

express the substitution rate for each genotype j

mi;j /Nmsi;j: ð2:1Þ

The population size N and mutation rate are assumed to

be constant; in appendix A, we present a derivation of

equation (2.1) from a model of within-host viral dynamics

which leads to an alternative interpretation of these quantities

when SSWM is applied to viruses. From this derivation, we

are able to make intuitive connections between our model

and traditional ideas in population genetics, broadly sup-

porting the use of the SSWM framework for within-host

evolution. Calculating mi,j from equation (2.1) requires a con-

stant of proportionality; for our numerical calculations, we

set this constant to 0.4 following the original assumption by

Gillespie (who interpreted it as a measure of the strength of

selection) [39]. While this choice is arbitrary, it does not

affect the qualitative results, as it affects all substitution

rates equally and the timescales of these processes are

otherwise arbitrary.

The SSWM model for within-host evolution means that a

higher relative fitness of a neighbouring genotype leads to a

faster rate of substitution, so in general each step through

genotype space has a different speed at which it occurs.

The biological basis for this effect derives from the prob-

ability of fixation of a new genotype when it first arises

within a host. A greater fitness advantage for the new geno-

type leads to a higher likelihood that it will fix after it arises.

Consequently, even if all neighbouring genotypes arise at the

same rate, the rate of substitution is faster when the relative

fitness difference is large.
(d) Calculating the probability of emergence
The branching process model gives us a framework to calcu-

late the probability of emergence, P(emergence). For our

models, there are two ways to compute the emergence prob-

abilities from the embedded discrete-time branching process:

numerically using standard methods [40] or using the exact

solutions we derive in appendix B. While both approaches

yield the same results, we present only results based on the

exact solutions. To gain intuition into the determinants of

emergence, we also present a simple approximation for the

probability of emergence in the limit of low initial between-

host fitness (low R0
(1)) and low mutation rates.
We first consider a simple, sequentially connected

chain of genotypes, where for each genotype, there exists

only one ‘neighbouring’ genotype that is more fit. If the

Lth genotype is the emergence genotype with R0
(L) . 1,

then we can derive an approximation for the probability of

emergence, combining elements of arguments from Iwasa

et al. [4] and André & Day [34], and using branching

process theory

PðemergenceÞseq: �
1

1� Rð1Þ0

 !
m1;2

m1;2 þ d1

� �
� � � 1

1� RðL�1Þ
0

 !

� mL�1;L

mL�1;L þ dL�1

� �
1� 1

RðLÞ0

 !
: ð2:2Þ

This expression breaks down into three biologically meaning-

ful factors. Each factor of 1/(1 2 R0
(i)) is the expected

number of infections in a subcritical chain of transmission

initiated by a type-i individual in the absence of evolution.

The factors mi,j/(mi,j þ di ) give the probability of the fixed

genotype changing from type i to type j before recovery

or death of a host infected with type i. The final factor,

1 2 1/(R0
(L)), is the probability that the emergence genotype

will successfully invade the host population if it arises in a

single host individual.

We can extend this approximation to the more general

case of an arbitrary genotype space. To estimate the prob-

ability of emergence starting with one infected individual

of type 1, let L 2 1 be the minimal number of mutational

steps from the initial genotype to an emergence genotype.

The probability of emergence will be proportional to mL21

as longer paths to emergence add terms of order mL or

higher (though note that factors of m are implicit in mi,j).

Let P be the set of mutational pathways of length L, each

spanning genotype i1 to an emergence genotype iL. Then

the probability of emergence can be approximated as

PðemergenceÞ �
X

ði1;...;iLÞeP
1� 1

RðiLÞ0

 !

�
YL�1

k¼1

1

1� RðikÞ0

mik ;ikþ1

ðmik ;ikþ1
þ dik Þ

:

ð2:3Þ

Each term within the summation corresponds to a particular

mutational pathway, and matches the approximation shown

in equation (2.2). The low mutation rate assumption allows

us to neglect outcomes where more than one virus lineage

reaches emergence. In the analyses presented below, we illus-

trate that the approximation works well through most of the

parameter range considered.
3. Effects of cross-scale selection on pathogen
emergence

We analyse two scenarios to explore the possible influence of

multiple scales of selection on evolutionary emergence. In the

first scenario, we consider a simple genotype space, and a

basic set of qualitatively distinct fitness landscapes, to under-

stand the fundamentals of how fitness landscapes at the two

scales interact to produce evolutionary outcomes. In the

second scenario, we extend these fitness landscapes to con-

sider multiple competing pathways of pathogen evolution,

creating the potential for conflict across scales.
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(a) Scenario 1: exploring interactions between scales of
selection in a simple genotype space

We consider a simple genotype space, with three genotypes

sequentially connected in a chain, and explore how selection

at different scales impacts disease emergence (figure 1). To

distinguish fitness landscapes in our scenarios from the gen-

eral theoretical results presented above, we refer to these

particular genotypes by a capital letter and numerical

subscript i, e.g. genotype A1.

At the between-host scale, we consider three fitness land-

scapes (figure 1a). We explore scenarios where the initial and

emergence genotypes have fixed fitnesses, and explore the

landscapes arising from differing fitnesses of the intermediate

genotype. In the ‘jackpot’ landscape, between-host fitness

does not change until the pathogen reaches the emergence

genotype (and thus hits the jackpot) (R0
(1) ¼ R0

(2) , R0
(3)).

In the ‘uphill’ landscape, the fitness increases with each

step through genotype space (R0
(1) , R0

(2) , R0
(3)). We arbitra-

rily choose fitnesses that increase linearly for this example.

In the ‘valley’ landscape, the fitness of the intermediate gen-

otype is lower than the fitness of the initial genotype, so the

pathogen must traverse a valley of lower fitness to reach

emergence (R0
(1) . R0

(2)� R0
(3)) (figure 1a). For simplicity, in

all of our examples, we assume rates of recovery or death

(di) are equal across genotypes. Variation in the recovery or

death rates di leads to qualitatively similar results, though

the probabilities of emergence increase more rapidly with

R0
(1) ¼ R0

(2) because the rising reproductive numbers corre-

spond to longer infectious periods 1/di, allowing more time

for substitution events to occur [34].

At the within-host scale, only pathways with increasing

fitness are relevant under the SSWM framework, so we con-

sider three cases that span the qualitative range of possible

fitness landscapes, given that we fix the fitnesses of the initial

and emergence genotypes (figure 1b). We define the ‘equal-

rate’ landscape as the case that has equal gains in relative
fitness when moving from the initial to the intermediate

genotype, and from the intermediate to the emergence geno-

type. Under the SSWM model for within-host evolution, this

yields equal substitution rates for the two mutational steps

(m1,2 ¼ m2,3). We note that the equal-rate landscape under

SSWM corresponds to previous models that have assumed

equal substitution rates and no back-mutations. The ‘fast–

slow’ landscape has a greater fitness gain from the initial to

the intermediate genotype than from the intermediate to

the terminal genotype; thus the substitution rate for the first

substitution is faster than the second (m1,2 . m2,3). The

‘slow–fast’ landscape is the opposite case, with the substi-

tution rate for the first substitution slower than the second

(m1,2 , m2,3). We assume a symmetry of fitnesses between

the fast–slow and slow–fast landscapes, for ease of com-

parison: m1,2 in the fast–slow case is equal to m2,3 in the

slow–fast case and vice-versa. To depict the within-host fit-

ness landscapes, we plot the logarithm of the absolute

fitnesses wi. This emphasizes the multiplicative relationships

that define relative fitnesses which drive the SSWM frame-

work. For example, the equal-rate landscape is linear in

log-scaled absolute fitness (figure 1b).

The approximation (equation (2.2)) shows that the prob-

ability of emergence is maximized when m1,2 ¼ m2,3. This is

because, when the fitnesses of the initial and emergence

genotypes are fixed, the product of substitution rates is

maximized when the rates are equal (and hence when the

relative fitnesses for each genotype transition are equal).

This in turn maximizes the overall probability of emergence,

since faster substitution means less chance that the competing

recovery rates di will prevail. This outcome can also be

explained through Jensen’s inequality [41], because the logar-

ithm of the product of terms mi,j/(mi,j þ di) in equation (2.2)

is concave down as a function of mi,j. Thus, we expect

anything other than the equal-rate case to have lower

probability of emergence, because variation in the mi,j’s

decreases the value of this product. We test this prediction
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Figure 2. Example of the interaction between selection at different scales. (a) We consider a set of jackpot landscapes at the between-host scale, with a range of
fitness values for the initial (A1) and intermediate (A2) genotypes (indicated by the shaded region). (b) The probability of emergence as a function of the between-
host fitness of the A1 and A2 genotypes, showing the interaction with the three within-host landscapes. The equal-rate (solid line) landscape gives the highest
probability of emergence because it gives the fastest substitutions overall. Results for fast – slow (dashed line) and slow – fast (dotted line) landscapes overlap almost
exactly. Black lines show exact solutions; grey lines show the approximation from equation (2.2), which fits well until R0

(1) and R0
(2) approach 1 (d1 ¼ d2 ¼ d3 ¼ 1;

b3 ¼ 1.3, b1 and b2 adjusted to yield desired R0
(i) values; N ¼ 106, m ¼ 1026, constant of proportionality ¼ 0.4).
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and illustrate the interplay between fitness landscapes at

different scales, by considering how the probability of emer-

gence for a jackpot between-host landscape is affected by

different within-host fitness landscapes (figure 2a). The

equal-rate scenario has the highest probability of emergence,

as we predicted; we also see that the approximation

(equation (2.2)) is quantitatively accurate through most of

the parameter range considered (figure 2b). The fast–slow

and slow–fast cases have virtually identical probabilities of

emergence, given the jackpot between-host landscape and

our assumption of symmetry between the fast–slow and

the slow–fast landscapes.

We can explore the different qualitative interactions across

scales by varying the intermediate values for both within-

host and between-host fitness landscapes, fixing the initial

and emergence fitnesses at both scales. Figure 3a shows

how the probability of emergence varies across a range of

possible intermediate values, spanning from valley to uphill

landscapes for the between-host scale, and from slow–fast

to fast–slow landscapes at the within-host scale. The prob-

ability of emergence increases going from a valley to uphill

between-host landscape (i.e. along the horizontal axis), as

expected intuitively and known from earlier studies [4,30,34].

Considering different within-host landscapes, we see that the

probability of emergence is maximal close to the equal-rate

case, as predicted from the approximation, but deviations

from this pattern arise from interactions between the fitness

landscapes at each scale. For clarity, we focus on the three

within-host landscapes shown in figure 1b, and track how

the probability of emergence varies as the between-host

fitness of the intermediate state increases (figure 3b; shown

as slices of the plot in figure 3a). When the intermediate

between-host fitness is greater than the initial fitness

(R0
(2) . R0

(1)), it is more advantageous for the pathogen to

mutate immediately and gain the between-host fitness

advantage so the fast–slow scenario is more favourable for

emergence. When the intermediate fitness is below the initial

fitness (R0
(2) , R0

(1)), it is more advantageous for the pathogen

to spend less time in the intermediate state, so the slow–fast
scenario is more favourable for emergence (figure 3b). Based

on these arguments, we would expect the curves for the

slow–fast and fast–slow cases to cross at R0
(2) ¼ 0.5, the fit-

ness of the initial genotype. However, the crossing point is

shifted slightly in favour of the fast–slow scenario, reflecting

an additional evolutionary benefit to spending more time in

the A2 genotype. All else equal, it is beneficial to spend

more time in the A2 genotype than the A1 genotype, because

all new cases infected by an A2-infected individual are born

into the A2 genotype (and have a chance of mutating directly

to the A3 genotype) and thus have a head-start towards emer-

gence. (This effect also causes the slight inequality between

emergence probabilities for the slow–fast and fast–slow

landscapes in figure 2b.) This scenario illustrates how

selection can interact across scales in non-obvious ways, as

the geometry of the within-host fitness landscape can

shift between-host outcomes and change the expected

probabilities of emergence.

(b) Scenario 2: alternative pathways illustrate the
potential for conflict across scales

To explore the potential for conflicts in selection pressure

across scales to influence pathogen emergence, we extend

our analysis to a more complex scenario where two neigh-

bouring mutations are available to the initial genotype B0:

one that leads to a pathway of decreasing between-host fit-

ness and eventual extinction (B01, B02), and one that leads to

a pathway of increasing between-host fitness and possible

emergence (B1, B2). We assume that these pathways have lin-

early decreasing or linearly increasing between-host fitness

values, respectively (figure 4a). As a first exploration of inter-

actions across scales, we consider simple within-host

scenarios by fixing the extinction pathway (B01, B02) to have a

particular equal-rate landscape and exploring the space of

possible equal-rate landscapes for the emergence pathway

(B1, B2) (figure 4b). This creates a potential conflict at the

two scales for some pathways (i.e. when the within-host land-

scape for the emergence pathway (B1, B2) is relatively flat) as
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within-host selection favours the pathway that leads to

extinction at the between-host scale. We summarize this

effect with the Pearson’s correlation coefficient between the

fitness values at the within-host scale (wi) and the fitness

values at the between-host scale (RðiÞ0 ) for each genotype.

When within-host fitness is negatively correlated with
between-host fitness (i.e. when (B1, B2) is flat), the probability

of emergence is low. The emergence probability drops drasti-

cally as the negative correlation becomes stronger, as the

lineage almost always evolves into the extinction pathway;

in effect, the lineage is lured into an evolutionary dead end.

When within-host fitness is positively correlated with
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between-host fitness, then the probability of emergence is

higher as the lineage almost always evolves along the

emergence pathway (figure 4c).

To explore the generality of these insights, we examine a

much broader set of scenarios by assigning random values to

the within-host fitnesses of all genotypes (B01, B02, B1, B2)

(figure 5a,b). The positive association between the probability

of emergence and the correlation of fitnesses across scales is

maintained (figure 5c). There is significant scatter in the

relationship, because the correlation is influenced by the fit-

nesses of genotypes B2 and B02, which may have minimal

influence on the probability of emergence depending on

the fitnesses of B1 and B01. Thus, having a high correla-

tion between the two fitnesses at the two scales does not

necessarily mean the lineage will be drawn towards the

emergence pathway by within-host selection. Additionally,

because correlation describes the linear dependence between

the fitnesses at both scales, it becomes a less appropriate

measure given the nonlinearity of the within-host fitness

values. To clarify this relationship, we plot the probability

of emergence versus the probability that the first mutational

step is to genotype B1, and therefore the emergence pathway

(figure 5d ). This shows a strong positive relationship with

less scatter, indicating that the probability of emergence is

influenced powerfully by which evolutionary pathway is

taken by the pathogen population, and hence by the

within-host fitnesses of the mutational neighbours of the

introduced strain. The residual scatter comes from randomly

generated landscapes for genotypes B1 and B2 that corre-

spond to the fast–slow scenario. A high within-host fitness

w1 leads to a high probability of stepping towards emergence,

but then the fitness w2 is only marginally higher, so the sub-

stitution rate m1,2 is slow, and there is a high likelihood that

the lineage never reaches emergence. The strong influence

of the first mutational step partially results from the absence

of back-mutations (a consequence of strong selection), which

means if the first mutational step is towards the extinction

pathway (which may be favourable at the within-host scale

despite its cost at the between-host scale) the pathogen is

unable to reach emergence.
4 Discussion
We have presented a cross-scale model of evolutionary emer-

gence of pathogens, drawing on population genetic theory to

embed a mechanistic model for within-host selection into a

branching process model for population-scale emergence.

Our results show that within-host fitness plays an important

role in evolutionary emergence and that interactions between

selection pressures at the within-host and between-host scales

can have a substantial effect on the probability of emergence.

A growing number of studies are mapping the structure

of within-host fitness landscapes for pathogens [42–44],

making it clear that within-host selection plays a non-trivial

role in real-world emergence scenarios. At the same time,

empirical research has started to measure fitness at multiple

scales [7,8] and track cross-scale evolution [15,16,45] for

pathogens linked to emergence events. Improving our under-

standing of pathogen emergence in novel environments

requires integration of evolutionary and ecological phenom-

ena across scales [5]. Our model provides a framework to

begin this integration, offering the potential of coupling

phenotypic data from experimental studies to pathogen

genotypes detected in field surveillance.

The most important results of our analysis are the quali-

tative insights about the relative risk of different emergence

pathways. Our simulations illustrate two key points about

the interactions between selection at the within-host and

between-host scales when multiple evolutionary trajectories

are available. First, and most broadly, positive correlations

between the fitnesses across scales increase the likelihood of

emergence. Because within-host selection drives movement

through genotype space, this conclusion is consistent with

theory showing that positive correlations between fitness

and dispersal patterns increase the establishment likelihood

of invasive species [46]. This also echoes themes from prior

theoretical studies of the influence of cross-scale selection

on the evolution of virulence, which have emphasized the

importance of conflicts in selection and the consequences

for optimal virulence and coexistence of strains with different

strategies [47–49]. Second, the local neighbourhood of the
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initial genotype in the within-host fitness landscape has a

dominant effect on emergence probabilities, because the first

mutational step determines what evolutionary trajectories are

accessible, reflecting empirical results in bacteriophage exper-

iments [50]. The importance of the local neighbourhood of

the initial genotype is especially pertinent when selection is

strong, so that the probability of back-mutation is negligible.

Both of these effects are masked when emergence dynamics

are studied at a single scale.

Our analysis shows that selection acts differently at the

within-host and between-host scales in the evolutionary

emergence scenarios we are considering. At the within-host

scale, under assumptions of SSWM, evolutionary change is

driven by the relative fitness of neighbouring genotypes

(compared with the current fixed genotype), and the effects

of selection are manifested chiefly in the duration that a

given genotype is fixed. At the between-host scale, the absolute

fitness of the current genotype (RðiÞ0 ) is the crucial measure, as it

determines whether the transmission chain continues or goes

extinct. These differences stem from basic population dynamic

properties of the emergence problem, which apply to many

emerging infections, such as weakly transmitting zoonoses [3].

Because R0
(i) , 1 for unadapted genotypes, the between-host

process is in an invasion regime, and competition for suscep-

tible hosts is negligible. We have assumed that all genotypes

are viable at the within-host scale in order to focus our attention

on population-scale emergence, and because the emerging

pathogens of greatest concern are those that are already able

to infect the novel host. However, it is important to recognize

that the pathogen can also undergo evolutionary invasion or

escape within the host, and that these can be cross-scale

problems involving within-cell processes [4,37,45,51].

We have used the SSWM framework to incorporate

mechanistic evolutionary principles at the within-host scale.

The SSWM model has been a favoured approach to analysing

evolutionary trajectories in empirically derived fitness land-

scapes [11,12,38]. Some aspects of the SSWM framework are

very well suited to modelling pathogen emergence, such as

the stochastic nature of mutation and fixation and the strong

selection pressures experienced by pathogens in novel environ-

ments [11,45]. However, other aspects of the SSWM model are

poor approximations to many pathogen emergence problems.

For instance, the assumption of weak mutation (and conse-

quently, a single genotype within each host) does not match

the high mutation rates of RNA viruses and the tremendous

diversity that can result [52,53]. Quasi-species theory may

provide a more accurate portrayal of pathogens with high

mutation rates, where selection acts on a ‘cloud’ of mutants

rather than any individual genotype [54,55]. The assumption

of constant population size inherent to SSWM is also a strong

simplification, because pathogen loads can vary markedly

throughout an infection (and between infections). An important

future aim is to integrate the within-host population dynamics

of the pathogen, which will influence the relative strength of

selection versus drift. A particularly important application is

to study evolutionary change during transmission bottlenecks,

which can be extremely narrow [56,57] so drift can act strongly.

André & Day [34] presented an elegant model showing how

this effect can interact with within-host substitutions to influ-

ence evolutionary emergence, but further work is needed to

model both evolutionary processes in the context of explicit

within-host genetic diversity. These strong assumptions of the

SSWM model should be borne in mind when interpreting
our results, as well as those in earlier studies applying the

SSWM framework to pathogen emergence problems. Indeed,

we have shown that previous models assuming equal substi-

tution rates for all genotypes, and no back-mutations, are

equivalent to the SSWM model for within-host evolution

with an equal-rate fitness landscape. Therefore, the caveats out-

lined above apply equally to these earlier studies, with the

added caution that the equal-rate landscape tends to give an

upper bound for probabilities of emergence.

The SSWM framework has previously been applied to

extracellular parasites and bacteria, as well as viruses [11,12,38].

Because viruses have a distinctive life-history involving repro-

duction within host cells, we have explored the applicability

of the SSWM framework to viruses by deriving the substitution

rate under SSWM assumptions from a basic model of within-

host viral dynamics (see appendix A). This derivation reveals

additional assumptions that are implicit in using SSWM to rep-

resent viral evolution. Namely, we assumed that all within-host

fitness differences among genotypes arise from replication rates

(not cell infection or within-host clearance), that viruses repro-

duce by budding at a constant rate and that mutations in

offspring virions of a given host cell occur independently [51].

Our result also gives new perspectives into the population size

component of the SSWM substitution rate. First, the derivation

shows that the relevant population size is the equilibrium

abundance of infected target cells, not viral particles. Second,

this population size will vary as a function of within-host

viral fitness, and will not remain constant for all genotypes

as assumed under the classical SSWM formulation. Further

investigation of how within-host dynamics lead to shifts in

viral genotypes is an important avenue to developing

improved cross-scale models.

Recent empirical studies have increasingly reported

measures of viral fitness or tracked viral evolutionary

dynamics across biological scales. These show how our

work could be applied, and also guide priorities for on-

going theory development. As a first example, we consider

the recent studies describing mutations that enable

H5N1 influenza to transmit among mammals [7,8]. This

work shows a predominantly positive correlation bet-

ween fitness measures across scales, indicating that some

mammal-transmissible genotypes may be favoured at the

within-host scale [7]. This amplifies concerns that these

genotypes could emerge in naturally circulating virus popu-

lations, though we emphasize that there is no evidence that

the higher-fitness genotypes would have R0 . 1 in humans,

since experiments were performed in ferrets under laboratory

conditions. It is also possible that other nearby genotypes (as

yet uncharacterized) may have higher within-host fitness,

leading to evolutionary dead ends as illustrated in figures 4

and 5. Nevertheless, our study contributes new insights

to the assessment of risk from these H5N1 influenza geno-

types by providing a theoretical framework in which to

qualitatively assess and compare the risk of emergence of

particular genotypes that could arise through mutation,

given fitness measures at within-host and between-host

scales. The model also presents a complementary approach

to other modelling analyses that have focused on the

within-host dynamics of emergence [17]. Conversely, con-

sideration of these influenza studies reveals complexities

in current data that our model does not address. Future

work will need to relate temporal changes in viral titre to

within-host fitness (and hence selection), and consider the
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potentially crucial influence of different tissue compartments

within a host [28].

Similar opportunities are evident when we consider recent

studies of viruses that have emerged across species boundaries,

such as canine parvovirus [13,58,59] and SARS-CoV [60,61].

Extensive laboratory work on SARS-CoV, motivated by geno-

types detected in field samples, has identified adaptive

mutations that improve cell receptor binding in humans;

these were found in viruses transmitted between humans,

but not in civet isolates [61]. Tracking the spread of such

mutations in the early stages of human-to-human transmission

would provide a unique opportunity to reconstruct an evol-

utionary emergence event, if the data can be linked [60].

Beyond-consensus sequencing studies have mapped out

changes in genotype frequencies within hosts and through

transmission chains, giving a window into cross-scale

dynamics [15,16], and showing preliminary evidence of how

viral diversity is influenced by transmission bottlenecks.

Such datasets will allow us to test the validity of cross-scale

evolutionary models, and refine our understanding of

pertinent mechanisms. A recent study of HIV-1 highlights

the unexpected insights than can arise from considering

sequence data across scales. Investigating the phenomenon

that HIV-1 exhibits faster substitution rates within hosts

than between hosts, it concludes that the probable mecha-

nism is that viruses closely related to the infecting strain are

preferentially transmitted following storage in long-lived

CD4þ T cells [62]. Such a finding demonstrates the potential

importance of considering specific (and sometimes idio-

syncratic) biological factors when addressing questions

about particular host–pathogen systems, and shows the

power of cross-scale data to advance our understanding of

pathogen evolution.

Accurate quantitative prediction of emergence proba-

bilities is probably a distant goal, but mechanistic models

help us better understand the relative risk of different patho-

gen genotypes, and assess which pathogens may be closer to

emergence. As a simple example, if two viral strains are each

shown to be two mutations from an emergence genotype

with R0 . 1, but the within-host fitness landscape is

smoothly uphill for one trajectory and rugged for the other,

then the strain with a smooth evolutionary path is the greater

risk. Our theoretical results show us how relationships

between fitnesses at multiple scales influence emergence, pro-

viding an integrative lens through which to view

accumulating data on emerging pathogens. These data are

arising from a broad array of approaches, from empirical

mapping of fitness landscapes to deep-sequencing studies

of evolutionary dynamics, and from in vitro and in vivo exper-

iments to global field surveillance. All of these approaches

can yield insight on evolutionary dynamics of pathogens at

within-host or between-host scales. We applaud the

recent trend towards characterizing transmissibility and

inter-host evolution, since this has been a crucial data

gap [5]; however, our results show that within-host fitness

must be measured in parallel to arrive at a holistic picture

of emergence risk. As the complexity and abundance of

empirical work on emerging pathogens (or pathogens that

threaten to emerge) continue to grow, the need for theoreti-

cal frameworks to analyse the resulting data and draw

integrative conclusions will be even greater. The model intro-

duced here represents a foundation for such an integrative

cross-scale theory.
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Appendix A. Deriving the strong selection, weak
mutation (SSWM) transition probabilities from a
model of viral dynamics
For a population of viruses with a single strain or genotype,

let V denotes the density of the virus, U the density of unin-

fected target cells and I the density of infected target cells.

The uninfected target cell population has a net growth rate

f (U ). In the absence of infection, assume that dU=dt has a

unique positive, stable equilibrium at U*, i.e. fðU�Þ ¼ 0 and

f 0ðU�Þ , 0 (the virus-free equilibrium). Free viral particles

encounter and infect the uninfected target cells at a rate aU.

Infected cells produce new viral particles via budding at a

rate b, and infected cells die at a rate d. Viral particles are

cleared from the host at a rate c. With the exception of f(U ),

all rates are per capita. Provided the viral population is

sufficiently large we can describe the viral and host cell

dynamics by a mean field equation

dU
dt
¼ fðUÞ � aUV;

dI
dt
¼ aUV � dI

and
dV
dt
¼ bI � cV � aUV:

9>>>>>=
>>>>>;

ðA 1Þ

When the virus initially infects the host at low numbers,

we approximate the establishment probability within

the host by assuming that U ¼ U� is constant, and I and V
are determined by a continuous time branching process

with transitions

ðI;VÞ ! ðI þ 1;V � 1Þ with rate aUV;
ðI;VÞ ! ðI;V þ 1Þ with rate bI

and ðI;VÞ ! ðI;V � 1Þ with rate cV:

9=
; ðA 2Þ

Then a single viral particle infects a cell with probability

q ¼ aU�

cþ aU�
ðA 3Þ

and does not infect a cell (i.e. is cleared by the host) with

probability 1 2 q. In the event that a viral particle infects a

cell, it gives rise to a number of offspring viruses that is

geometrically distributed with mean n ¼ b/d. Thus, the

reproductive number for a virus, which is the expected

number of viruses produced after one full cycle of cell infec-

tion, is qn. The generating function for the complete offspring

distribution is given by [51]

gðxÞ ¼ 1� qþ q
1þ nð1� xÞ : ðA 4Þ

From basic branching process theory, the ultimate prob-

ability of extinction for the viral lineage is given by the

non-zero solution to g(e) ¼ e. We can then solve for the
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probability of establishment for a single viral particle, which

is q 2 1/n [51].

If the viral population establishes, under appropriate

assumptions, the quasi-stationary distribution is concentrated

on the attractor of the system [63]. For simplicity, let us

assume that this attractor is an equilibrium. We denote this

equilibrium with established virus by the superscript †. The

probability that a virus infects a cell is denoted by q†, and

is found by substituting U† for U* in equation (4.3). Because

the system is at equilibrium, q† n ¼ 1, giving

aUy

cþ aUy
n ¼ 1: ðA 5Þ

From this, we can solve for U† and for the non-trivial

equilibrium of equation (4.1)

Uy ¼ c
aðn� 1Þ;

Iy ¼ fðUyÞ
d

and Vy ¼ fðUyÞ
aUy

:

9>>>>>>=
>>>>>>;

ðA 6Þ

Now consider two competing viral genotypes, genotype 1

and genotype 2. Assume that there is no superinfection, i.e.

each cell has only one fixed viral genotype, and that infection,

clearance and infected cell death rates for the two viral types

are the same (i.e. a1 ¼ a2 ¼ a, c1 ¼ c2 ¼ c, and d1 ¼ d2 ¼ d).

Then the viral dynamics are given by

dU
dt
¼ fðUÞ � aUðV1 þ V2Þ;

dIi

dt
¼ aUVi � dIi

and
dVi

dt
¼ biIi � cVi � aUVi:

9>>>>>=
>>>>>;

ðA 7Þ

Define the equilibrium abundance of uninfected cells

when only viral type i is present as

Uyi ¼
c

aðni � 1Þ ðA 8Þ

where ni ¼ bi=d. With this deterministic model, linearization

of the boundary equilibrium suggests that the viral popu-

lation with the lower Uyi invades and displaces the other

viral type. This aligns with classical theory of ecologi-

cal competition for a single limiting resource. Without

loss of generality, assume that Uy1 .Uy2, which occurs when

n2 . n1. Note that, because a1 ¼ a2 and c1 ¼ c2, the cell infec-

tion probabilities q1 ¼ q2 ¼ q for a given uninfected cell

density U. Therefore, the ni are proportional to the reproduc-

tive numbers for each viral type, and the condition n2.n1

means that type 2 has higher fitness.

If viral type 1 has already established in the host and is at

equilibrium abundance Uy1, we can approximate the invasion

dynamics of the other genotype with a continuous time

branching process with transitions

ðI2;V2Þ ! ðI2 þ 1;V2 � 1Þ with rate aUy1V2;
ðI2;V2Þ ! ðI2;V2 þ 1Þ with rate b2I2

and ðI2;V2Þ ! ðI2;V2 � 1Þ with rate cV2:

9=
; ðA 9Þ

Following from the probability of establishment of viral

type 2 being q2 2 1/n2 and using equation (4.5), the
probability of establishment of viral type 2 is:

aUy1
cþ aUy1

� 1

n2
¼ 1

n1
� 1

n2
; ðA 10Þ

where aUy1=ðcþ aUy1Þ corresponds to q for viral type 2 invad-

ing over viral type 1 at equilibrium. This probability is always

positive given our assumption of Uy1 . Uy2.

When viral type 1 is at equilibrium, mutant viruses

are produced at a rate nb1Iy1 where n is the probability that

a given offspring virion will bear a mutation at the locus

that converts type 1 to type 2. Altogether this gives the rate

of substitution (in which viral genotype 2 displaces viral

genotype 1) as

m1;2 ¼ nb1Iy1
1

n1
� 1

n2

� �
: ðA 11Þ

We equate the establishment probability (1/n1 2 1/n2)

with the selection coefficient s1,2 from the main text. This

choice is consistent with Haldane’s proof that a beneficial

allele with selection coefficient s sweeps to fixation with a

probability directly proportional to s [64], and is equivalent

with Gillespie’s definition of s in the weak selection limit

used in his original SSWM derivation. We can then compare

quantities from the derivation above with the classical SSWM

formulation shown in the main text: nb1 in our result is

equivalent to the mutation rate m, and Iy1 in our result

is equivalent to the population size N. Thus, the expression

nb1Iy1ð1=n1 � 1=n2Þ derived here corresponds closely to the

mi,j expression in the main text (equation (2.1)).

We have shown conditions under which the viral

dynamics model reduces to a form closely analogous to the

SSWM formulation for substitution rates. Yet this derivation

cannot be interpreted as an exact derivation of the SSWM

model, as there are some subtle inconsistencies. The measure

of population size, Iy1 corresponds to the infected host cell

population, not the total number of viral particles. Signifi-

cantly, the quantity Iy1 is a function of within-host viral

fitness, leading to the potential for viral fitness to impact sub-

stitution rates through the rate at which new mutants are

generated. This demographic impact of higher fitness is neg-

lected in the classical SSWM formulation. Overall, though,

the derivation shows that a close analogue of the SSWM

framework can be derived from a simple model of viral

dynamics, subject to similar assumptions about the strength

of selection and mutation processes. Further work to explore

how within-host pathogen dynamics can link to simple

models of genotype substitution would be valuable, given

the widespread usage of SSWM in the empirical literature.
Appendix B. Exact solution for the probability of
emergence in a sequentially connected
landscape
To write down an exact solution for the extinction probabil-

ities, we consider the ‘embedded’ discrete-time branching

process where one unit of time corresponds to an update

of the continuous time branching process. The extinction

probabilities for the embedded process and the original

continuous time process are equivalent. The ith component

of the generating map G : ½0; 1�k ! ½0; 1�k for the embedded
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branching process is given by a power series

Giðz1; . . . ; zkÞ ¼
X

n1;...;nk

piðn1; . . . ; nkÞzn1

1 zn2

2 � � � z
nk
k ;

where piðn1; . . . ; nkÞ is the probability that an individual of

type i has n1 offspring of type 1, n2 offspring of type 2, etc.

For our model, an update of an individual host infec-

ted with genotype i leads to death with probability

di=ðbi þ di þ
P

j[Mi
mi;jÞ, leads to a birth with probabi-

lity bi=ðbi þ di þ
P

j[Mi
mi;jÞ, or leads to a substitution event

in which genotype i is replaced by genotype j with prob-

ability mi;j=ðbi þ di þ
P

j[Mi
mi;jÞ for each genotype j in Mi.

Hence, the ith component of the generating map is

Giðz1; . . . ; zkÞ ¼
1

bi þ di þ
P

j[Mi
mi;j

biz2
i þ di þ

X
j[Mi

mi;jzj

0
@

1
A:

Let ei be the extinction probability of the process given the

initial condition of one individual infected with genotype i.
Provided that the branching process is supercritical (i.e.

there is a positive probability of emergence), the vector of

extinction probabilities e ¼ ðe1; . . . ; ekÞ is the unique solution

to G(e) ¼ e in [0,1)k.

For the landscapes considered in the text, we can solve for

e explicitly in an inductive fashion. Consider the case of a

sequential landscape for which M1 ¼ f2g, M2 ¼ f3g, . . .

Mk�1 ¼ fkg, and Mk ¼ ;. For 1 	 i , k, let mi ¼ mi;iþ1. As in

the text, we assume that bk=dk . 1, i.e. type k is an emergence

genotype. To solve for the extinction probabilities, we pro-

ceed inductively from genotype k back to genotype 1. The
extinction probability ek is the unique solution ek ¼ zk to

bkz2
k þ dk

bk þ dk
¼ zk for zk [ ð0; 1Þ

which is given by

ek ¼
dk

bk
:

Proceeding inductively, suppose that we have solved for

eiþ1. The ith component of the generating map Gi only

depends on zi and ziþ1. Slightly abusing notation, ei is the

unique solution ei ¼ zi to Giðzi; eiþ1Þ ¼ zi with zi [ ð0; 1Þ.
Equivalently, ei is the unique solution to

biz2
i þ di þmieiþ1

bi þ di þmi
¼ zi for zi [ ð0; 1Þ

which is given by

ei ¼

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4bimieiþ1 þm2

i þ 2ðdi þ biÞmi þ d2
i � 2bidiþb2

i

q
þmi þ di þ bi

2bi
:

A similar induction method can be used to find the exact

solutions to the landscapes with two linear paths emanating

from genotype i. More generally, it is possible to write down

an exact solution for landscapes whenever the underlying

directed graph has no directed cycles. This result will be

presented in a future study.
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