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Abstract. A class of truncated unimodal discrete-time single species models for which low
or high densities result in extinction in the following generation are considered. A classifi-
cation of the dynamics of these maps into five types is proven: (i) extinction in finite time
for all initial densities, (ii) semistability in which all orbits tend toward the origin or a semi-
stable fixed point, (iii) bistability for which the origin and an interval bounded away from
the origin are attracting, (iv) chaotic semistability in which there is an interval of chaotic dy-
namics whose compliment lies in the origin’s basin of attraction and (v) essential extinction
in which almost every (but not every) initial population density leads to extinction in finite
time. Applying these results to the Logistic, Ricker and generalized Beverton-Holt maps
with constant harvesting rates, two birfurcations are shown to lead to sudden population
disappearances: a saddle node bifurcation corresponding to a transition from bistability to
extinction and a chaotic blue sky catastrophe corresponding to a transition from bistability
to essential extinction.

1. Introduction

Populations can exhibit abrupt changes in their abundance in response to changes
in environmental factors. Dramatic examples include the precipitous drop of blue
pike from annual catches of 10 million pounds to less than one thousand pounds in
the mid 1950s [2], the unexpected collapse of the Peruvian anchovy population in
1973 [6], and the sudden reduction of Great Britain’s grey partridge population in
1952 [22]. While it is natural to assume that these dramatic changes correspond to
a discontinuous change in an environmental factor, ecologists have long realized
that gradual changes can lead to dramatic changes in population abundance [14,
18]. For instance, Beeton [2] has attributed the collapse of the blue pike populations
to the relatively gradual onset of eutrophication.

One explanation for these sudden changes is that ecological communities can
exhibit a multiplicity of stable dynamical states and small environmental changes
can push the system from one stable state to another [14,18]. A simple continuous
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time model that exhibits this behavior involves a population experiencing a con-
stant rate of depletion (e.g., constant rate of predation, harvesting for constant yield,
constant emigration) [5]. If N denotes the population density, r the intrinsic rate of
growth of the population, K the carrying capacity and D the rate of depletion, then
this model is given by

dN

dt
= rN(1 − N/K) − D.

Non-dimensionalizing the state variable N by setting x = N/K , we get

dx

dt
= rx(1 − x) − d (1)

where d = D/K . For this model to make biological sense, solutions x(t) of (1) are
truncated to max{x(t), 0}. For the truncated flow, the origin is an attractor. The dy-
namics of this model are summarized in Fig. 1. When d < r/4, there is a bistability,
and the populations experience either extinction in finite time or approach a stable
non-zero fixed point depending on initial conditions. When d > r/4, extinction
in finite time occurs for all initial conditions. The sudden population disappear-
ance as d crosses over the value r/4 corresponds to a saddle node bifurcation.
Since d = D/K decreases as K increases, enriching this system (i.e., increasing
the rate at which limiting nutrients enter the system) does not result in population
disappearances.

For many species, population growth is a seasonal affair rather than a con-
tinuous affair. In which case, continuous changes should be replaced by discrete
changes and differential equations should be replaced by difference equations. Sur-
prisingly, even though May discussed the discrete time analogs of (1) in a 1977
review article [18], it was not until two decades later that the dynamics of these
difference equations were looked at more closely. In 1996, Sinha & Parthasara-
thy [26] considered the Ricker map with depletion, xn+1 = xn exp(r(1 − xn)) − d,
while in 1999 Vandermeer & Yodzis [28] considered the discretized Logistic map
with depletion xn+1 = rxn(1 − xn)− d . These authors numerically uncovered two
remarkable behaviors that the continuous time model does not exhibit: (i) popula-
tions can persist under a high rate of depletion even when lower rates of depletion
lead to extinction; (ii) populations undergoing constant depletion can persist chaot-
ically with relatively high minimum population densities, thereby reducing the risk
of extinction. Also in 1996, Gyllenberg, Osipov, and Söderbacka [10] analyzed a
general class of maps that they called Allee functions: unimodal maps for which
extinction is inevitable for too high or too low initial population densities. They
proved that under certain conditions Allee functions exhibit chaotic dynamics on a
repelling set.

In this article, we consider Allee functions that have a negative Schwarzian
derivative. In section 2, we introduce this class of functions formally, and show
that harvested Logistic, Ricker, and Beverton-Holt models lie within this class.
Our main results categorize the dynamics of these maps into five types (extinction,
semistability, bistability, chaotic semistability, essential extinction), three of which
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Fig. 1. Bifurcation diagrams for (1): In (a), the white region corresponds to extinction in
finite time, and the shaded region corresponds to bistability. In (b), r is set to 1.0 and the
equilibria of (1) are plotted as functions of d. The stable and unstable fixed points are drawn
as solid and dashed lines, respectively.

(extinction, bistability, essential extinction) are generic. For one of these types (es-
sential extinction), we discuss how our results in conjunction with the work of
Gyllenberg, Osipov, and Söderbacka [10] imply the existence of chaotic transients
prior to extinction. We also provide an example that illustrates the necessity of the
negative Schwarzian derivative assumption. In section 3, we show how these results
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can be used to detect basin boundary collisions and population disappearances for
the harvested Logistic, Ricker and generalized Beverton-Holt maps. In section 4,
we discuss the biological implications these results. In section 5, we prove the main
theorem.

2. Definitions, examples and main results

We consider a certain class of discrete time single species models of the form

xn+1 = f (xn)

where xn denotes the population density in the n-th generation. The models we
consider are such that high or low population densities in any given generation
result in the extinction of the population in the following generation. Low densities
resulting in extinction may occur when a population experiences a constant rate of
depletion or when low densities prevent individuals from finding mates (i.e., the
Allee effect). Alternatively, high densities resulting in extinction may occur when
populations achieve sufficiently large numbers to exhaust their resources leaving
nothing for the next generation.

Let R+ = {x ∈ R : x ≥ 0}. We consider f : R+ → R+ that satisfy the
following assumptions:

(A1) f is continuous.
(A2) There exists [a, b] ⊂ (0, ∞) such that f = 0 on [0, a] ∪ [b, ∞).
(A3) f restricted to [a, b] is C3.
(A4) f restricted to [a, b] has a unique critical point c ∈ (a, b).
(A5) f restricted to [a, b] has negative Schwarzian derivative:

Sf (x) = D3f (x)

Df (x)
− 3

2

(
D2f (x)

Df (x)

)2

< 0

for all x ∈ [a, c) ∪ (c, b].

The Schwarzian derivative Sf in (A5) was originally formulated by Herman A.
Schwarz in his work on conformal mappings [13]. Its significance for conformal
maps resides in the fact that Sf (x) = 0 for all x if and if f is a fractional linear
transformation (i.e., f (x) = (ax + b)/(cx + d)). Singer [25] was the first to study
the dynamics of one-dimensional maps with negative Schwarzian derivative. His
motivation for studying these maps was two fold: maps with negative Schwarzian
derivative give rise to a minimum principle which has strong dynamical implica-
tions, and many single species models have negative Schwarzian derivative.

Three classes of maps that satisfy these assumptions are the harvested Logistic,
Ricker and generalized Beverton-Holt models.

2.1. The Logistic map with depletion

The Logistic map is given by g(N) = rN(1 − N/K) where r is the intrinsic rate
of growth of the population and K is the carrying capacity. Since g only maps the
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interval [0, K] onto itself when 0 ≤ r ≤ 4, most studies of this map have been con-
fined to his range of r values. Following Vandermeer & Yodzis [28], we permit any
positive value of r as we truncate the map. Non-dimensionalizing the state variable
of the harvested Logistic map g(N) − D by setting x = N/K and d = D/K , we
get rx(1 − x) − d . The proof of the following proposition is left as an exercise for
the reader.

Proposition 1. Let f (x) = max{rx(1 − x) − d, 0} with r > 0 and d > 0.

1. If r ≤ 4d, then f (x) = 0 for all x ≥ 0.
2. If r > 4d, then f satisfies (A1)–(A5).

2.2. The Ricker map with depletion

The Ricker map g(N) = N exp(r(1 − N/K)) has a long history of use in the
study of single species population dynamics [23] and its harvested form was stud-
ied by Sinha & Parthasarathy [26]. Non-dimensionalizing the state variable of the
harvested Ricker map g(N) − D by setting x = N/K and d = D/K , we get
x exp(r(1−x))−d . We leave the proof of the following proposition as an exercise
for the reader.

Proposition 2. Let f (x) = max{x exp(r(1 − x)) − d, 0} with r > 0 and d > 0.

1. If d ≥ exp(r − 1)/r , then f (x) = 0 for all x.
2. If d < exp(r − 1)/r , then f satisfies (A1)–(A5).

2.3. The generalized Beverton–Holt map with depletion

The generalized Beverton–Holt map is given by

g(N) = rN

1 + (N/K)γ

where γ ≥ 1 measures the abruptness of the onset of density dependence [8].
When γ = 1, g(N) is the well known Beverton–Holt model [4] and is an increas-
ing, saturating, concave function. The generalized form with γ > 1 are humped
shaped functions that have provided good fits to insect population census data [3].
For γ slightly larger than one, the per-capita growth rate r/(1 + (N/K)γ ) declines
relatively gradually as N increases. For large values of γ , the per-capita growth
rate r/(1 + (N/K)γ ) remains close to r for N < K , plunges abruptly through r/2
when N = K and rapidly approaches zero for N > K . For γ < 2, Getz [8] has
shown that the unique positive fixed point of this map is linearly stable. Non-di-
mensionalizing the state variable of the harvested generalized Beverton–Holt map
g(N) − D by setting x = N/K and d = D/K , we get rx

1+xγ − d.

Proposition 3. Let f (x) = max{ rx
1+xγ − d, 0} with r > 0, d > 0 and γ > 1.

Define c = (γ − 1)
− 1

γ .

1. If f (c) = 0, then f = 0 for all x ∈ R+.
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2. If f (c) > 0 and γ ≥ 2, then f satisfies (A1)–(A5).

We present the proof of the following proposition to clarify the need for the
assumption that γ ≥ 2 in its second assertion.

Proof. Let g(x) = rx
1+xγ . Assume that γ > 1. g has a unique critical point at

c = (γ − 1)−1/γ at which it attains its maximum g(c). It follows that if g(c) ≤
d, then f (x) = 0 for all x ≥ 0. Assume that g(c) > d. Since g(0) = 0 and
limx→∞ g(x) = 0, g−1(d) consists of exactly two points, a and b, that satisfy
0 < a < c < b. Taking the Schwarzian derivative of g, we get

− (
x−2+γ (−1 + γ ) γ

(
2 (1 + γ ) + xγ

(
2 − 3γ + γ 2

)))
2(−1 + xγ (−1 + γ ))2

.

Since 2 − 3γ + γ 2 ≥ 0 whenever γ ≥ 2, the Schwarzian derivative of g(x) is
strictly negative for all x provided that γ ≥ 2.

2.4. Main results

To understand the dynamics of a map f : R+ → R+ satisfying (A1)–(A5), we
consider five cases. In two of these cases, extinction is inevitable. In the other three
cases, populations persist or go extinct depending upon initial densities. We begin
with the simplest case that requires a minimal amount of machinery to prove. Let
f n denote f composed with itself n times. Recall that a point x ∈ R+ is a fixed
point of f if f (x) = x.

Lemma 1. Let f : R+ → R+ be a map that satisfies (A1)–(A4). If the only fixed
point of f is 0, then

lim
n→∞ f n(x) = 0 for all x ∈ R+.

If f has more than one fixed point, then

lim
n→∞ f n(x) = 0 for all x ∈ R+\[p, p∗]

where p = min{x : x > 0, f (x) = x} and p∗ = max f −1(p).

Proof. Suppose 0 is the only fixed point. Continuity of f implies that f (x) < x

for all x ∈ (0, ∞). Let x ∈ R+ be given. Since f n(x) is a decreasing sequence that
is bounded below by 0, f n(x) converges to some point x∗ in R+. Continuity of f

implies that x∗ is a fixed point of f and, therefore, must equal 0.
Suppose f has more than one fixed point. Define p = min{x : x > 0, f (x) =

x}. Since f = 0 on R+\(a, b), p ∈ (a, b). We claim that p ∈ (a, c). Suppose to the
contrary that p ∈ [c, b). Since Df ≤ 0 on [c, b) and f (p) = p ≥ c, there exists a
y ∈ (a, c) such that f (y) > y. Since f (a) = 0, the Intermediate Value Theorem
applied to f (x)−x implies that there exists x ∈ (a, y) such that f (x) = x. This con-
tradicts the definition of p. Therefore, p must lie in (a, c). Let p∗ = max f −1(p).
Since a < p = f (p) < min{c, f (c)} and f ([a, c)) = [0, f (c)) = f ((c, b]), we
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get that p∗ > c and, consequently, Df < 0 on (p∗, b). From this observation, it
follows that f ((p∗, ∞)) ⊂ [0, p). Since 0 is the only fixed point in R+\[p, p∗]
and f (x) ≤ x for x ∈ R+\[p, p∗], f n(x) is a decreasing sequence that converges
to 0 for any x ∈ R+\[p, p∗].

We remark that continuity of f and the fact that f = 0 on [0, a) implies that
whenever f n(x) converges to the origin, it does so in a finite number of iterates.

The remaining four cases are captured by the following theorem whose proof
makes extensive use of results from the theory of one-dimensional dynamics [7,
17,21,25]. The proof of this theorem is delayed until section 5. Recall that a set
A ⊂ R+ is called forward invariant if f (A) ⊆ A and invariant if f (A) = A.
The basin of attraction of a compact forward invariant set A is the set of points
x ∈ R+ such that limn→∞ dist(f nx, A) = 0. A fixed point x is linearly stable if
|Df (x)| < 1 and linearly unstable if |Df (x)| > 1.

Theorem 1.Let f : R+ → R+ be a map that satisfies (A1)–(A5). Assume f has
at least two fixed points. Let

p = min{x : x > 0, f (x) = x} and p∗ = max f −1(p).

Then the dynamics of f falls into one of four categories:

1. (Semi-stability) If f has exactly two fixed points, 0 and p, then the basin of
attraction of p is [p, p∗].

2. (Bistability) If f has at least three fixed points and f 2(c) > p, then either there
is a linearly stable fixed point q ∈ (p, p∗) whose basin of attraction is (p, p∗)
or the interval I = [f 2(c), f (c)] is forward invariant with basin of attraction
(p, p∗).

3. (Chaotic semi-stability) If f has at least three fixed points and f 2(c) = p,
then [p, f (c)] is invariant and for Lebesgue almost every x ∈ [p, f (c)],
∪n≥0f n(x) = [p, f (c)] and limn→∞ 1

n
ln |Df n(x)| > 0.

4. (Essential extinction) If f has at least three fixed points and f 2(c) < p, then
limn→∞ f n(x) = 0 for Lebesgue almost every x ∈ R+.

We can interpret these results as follows. When the per-capita growth rate of the
population is strictly less than one for all population densities, Lemma 1 implies
that extinction in finite time occurs for all initial densities. If the per-capita growth
rate of the population is strictly less than one except at one population density, the
dynamics are semi-stable.

To interpret what happens when the per-capita growth rates are greater than
one for an interval of population densities, we notice that comparisons between
f 2(c) and p can be translated into comparisons between the maximum size f (c)

of a growing population and the critical population density p∗. When the maxi-
mum size of a growing population is less than the critical density, the population
can persist indefinitely with densities bounded away from zero provided that the
initial population size is of intermediate size. When the maximum size of a growing
population exceeds the critical density, populations are almost surely doomed to
extinction. In the spirit of Melbourne’s definition of an essential attractor [20], we
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call this occurrence essential extinction as a randomly chosen initial density leads
to extinction with probability one. On the compliment � of the origin’s basin, the
proof of Theorem 1 implies that limn→∞ 1

n ln |Df n(x)| > 0 for all x ∈ � (i.e., �

is repellor and nearby orbits on � tend to diverge). In addition, the following result
of Gyllenberg, Osipov, and Söderbacka [10, Prop. 3.9] which we state using our
notation provides further information.

Theorem 2 (Gyllenberg, Osipov, and S̈oderbacka 1996). Let f be a function
such that

1. (A1)–(A4) are satisfied,
2. f (x) has at least three fixed points,
3. f 2(c) < p, and
4. the compliment � of the origin’s basin of attraction has Lebesque measure zero.

Then � contains a dense orbit and infinitely many periodic points.

Theorem 1 implies that assumption 4 of Theorem 2 can be replaced by the nega-
tive Schwarzian assumption (A5). These results imply that in the case of essential
extinction, the set of orbits that do not head toward extinction form a “chaotic
repellor.”

The third assertion of Theorem 1 implies that the transition between bistability
and essential extinction occurs when the maximum size of a growing population
equals the critical density. In this case, the populations can persist at a semistable
chaotic interval.

2.5. On the necessity of the negative Schwarzian derivative

Before proceeding to examples of maps that satisfy the assumptions of Theorem 1,
we illustrate the necessity of the negative Schwarzian derivative assumption in
Theorem 1. Define

g(x) = −150 + 667

2
x − 806

3
x2 + 308

3
x3 − 113

6
x4 + 4

3
x5.

The function g(x) has the following properties:
– g(1) = g(4) = 0,

– g(x) > 0 for x ∈ (1, 4),
–– the only critical point for g(x) in the interval [1, 4] is at x = 3/2,
– g has exactly two fixed points, x = 3 and x = p where p ∈ (1, 2), in the

interval [1, 4],
– g′(3) = −1/2,
– g(3/2) > 5, and
– the Schwarzian derivative of g at x = 11/4 is positive.

Define

f (x) =
{

g(x) if x ∈ (1, 4)

0 else.

By construction f (x) satisfies (A1)–(A4) with critical point c = 3/2. Since,
f 2(c) = 0 < p, the function f would fall into the case of essential extinction
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in Theorem 1 if the negative Schwarzian derivative condition were satisfied. How-
ever, since x = 3 is a linearly stable fixed point for f , there is an interval of initial
conditions that do not lead to extinction. Hence, the negative Schwarzian hypothesis
is necessary in Theorem 1.

3. Population disappearances and basin boundary collisions

In this section, we revisit the Logistic, Ricker, and generalized Beverton–Holt maps
with constant depletion. These maps are of the form

f (x) = max{g(x) − d, 0}
where g is the Logistic, Ricker or generalized Beverton–Holt map. To illustrate
how the conditions in our main results can be checked analytically, we first revisit
the Logistic map. We follow this up with numerical explorations of the Ricker and
generalized Beverton-Holt maps.

Before preceding we make an observation about the attracting interval I =
[f 2(c), f (c)] (see assertion 2 of Theorem 1) for these choices of f . Since I =
[g(g(c) − d) − d, g(c) − d], the length of I is L(d) = g(c) − g(g(c) − d). The
proof of Theorem 1 implies that g(c) − d > c whenever I is an attracting interval.
Hence, L′(d) = g′(g(c)−d) < 0 when I is an attracting interval. This observation
suggests that increasing the carrying capacity of a population or decreasing the
depletion rates may increase the variability of persisting populations.

3.1. The Logistic map revisited

Consider the map from R+ to R+ given by

f (x) = max{rx(1 − x) − d, 0}
where r > 0 and d > 0. Recall, if r < 4d , then f (x) = 0 for all x ∈ R+ and the
population always goes extinct after one generation. Assume that r > 4d. We need
to determine when f has non-zero fixed points. Solving rx(1 − x) − d = x for x,
we get

x = r − 1 ±
√

(r − 1)2 − 4dr

2r
.

Therefore, if (r − 1)2 < 4dr or r ≤ 1, there are no non-zero fixed points and
Lemma 1 implies that all orbits are attracted to the origin. Assume that r > 1 and
(r − 1)2 ≥ 4dr . The smallest non-zero fixed point p is given by

p = r − 1 −
√

(r − 1)2 − 4dr

2r
.

If (r − 1)2 = 4dr , then p is the only additional fixed point and Theorem 1 implies
that p is semi-stable. On the other hand, if (r − 1)2 > 4dr , then there are three
fixed points and we need to consider the second iterate of the critical point c = 1/2,

f 2(c) = max{−d +
(

1 + d − r

4

) (
−d + r

4

)
r, 0}.
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Fig. 2. Bifurcation diagram for f (x) = max{rx(1 − x) − d, 0} where the region labeled
E corresponds to extinction, the region labeled B corresponds to bistability, and the region
labeled EE corresponds to essential extinction.

Solving for f 2(c) = p for d , we get

d = −8 − 2 r + r2

4 r
.

If d = −8−2 r+r2

4 r
, then Theorem 1 implies that f restricted to [p, r/4 − d] is cha-

otic. If (r−1)2

4r
> d > −8−2r+r2

4r
, then Theorem 1 implies that there is an attracting

interval bounded away from zero. Therefore, the populations can persist at arbi-
trarily high depletion rates provided that their intrinsic rate of growth is sufficiently

high. If 0 < d < −8−2r+r2

4r
, then Theorem 1 implies essential extinction of the

population. These results are summarized in Fig. 2.
To examine the effect of depletion rates and enrichment on population dynam-

ics, we consider f when r is fixed and d is allowed to vary. Recall that d = D/K

where D is the depletion rate and K is the carrying capacity of the population.
Suppose that 1 < r < 4 as in Fig. 3a. When d is sufficiently small, f supports
two attracting sets: the origin and an interval bounded away from the origin. As d

increases, the attracting interval shrinks and collides with the fixed point p via a
saddle node bifurcation. For larger d values, the population always goes to extinc-
tion in finite time. Hence, for this range of r values, the behavior of the harvested
Logistic map is similar to its continuous counterpart. Now, suppose that r > 4 as
in Fig. 3b. When d is sufficiently large, the populations are driven to extinction in
finite time. As d decreases, the system undergoes a saddle node bifurcation and
exhibits a period-doubling route to chaos. As d continues to decrease, the upper
edge of the chaotic interval collides with the boundary of the origin’s basin of at-
traction. This collision results in essential extinction. In this case, the compliment
of the origin’s basin of attraction is a chaotic repellor that can produce long-term
chaotic transients as illustrated in Fig. 4.
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Fig. 3. Orbital bifurcation diagrams for f (x) = max{rx(1 − x) − d, 0}. For each d value a
random initial condition x ∈ [0, r/4 − d] is selected and f 100(x) is plotted. In (a) r = 3.8,
and in (b) r = 5.0.

3.2. The Ricker map revisited

Let f : R+ → R+ be given by

f (x) = max{x exp(r(1 − x)) − d, 0}.
Since it is not possible to solve explicitly for the non-zero fixed points, we numer-
ically created a bifurcation diagram in Fig. 5a. When r is fixed at a value slightly
larger than 2.55, this bifurcation diagram is qualitatively different from the corre-
sponding bifurcation diagram in Fig. 2 for the Logistic equation. For these larger r

values, populations can persist at an attracting interval at low as well as relatively
high d values. We illustrate the orbital dynamics for r = 2.6 in Fig. 5b. At high
depletion rates, the populations always experience extinction in a finite number
of generations. As the depletion rate decreases or the system is enriched (i.e., K
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Fig. 4. Chaotic transients for f (x) = max{rx(1 − x) − d, 0} with r = 5.0, d = 0.3499,

and initial condition x = r−1−
√

(−1+r)2−4mr

2r
+ 0.00001.

is increased), a linearly stable fixed point is created via a saddle-node bifurca-
tion and period doubling cascade to chaos ensues. In this range of d values, the
populations can exhibit chaotic dynamics bounded well above extinction. As the
depletion rate continues to decrease or the system continues to be enriched, the size
of the attracting interval increases until it collides with the boundary of the origin’s
basin of attraction. This collision results in an essential extinction. Alternatively,
for low depletion rates or for highly enriched systems, the origin’s immediate ba-
sin of attraction is sufficiently small to permit the persistence of highly variable
populations.

3.3. The generalized Beverton–Holt map revisited

Let f : R+ → R+ be given by

f (x) = max{ rx

1 + xγ
− d, 0}

where r > 1, d > 0, and γ ≥ 1. To apply our results, Proposition 3 requires that we
assume that γ ≥ 2. Since the behavior bifurcation behavior of this map with γ > 2
fixed while d and r vary is similar to the Ricker map, we fix r at 2 and examine the
role of the abruptness parameter γ in Fig. 6. While sufficiently high intrinsic rates
of growth permit population persistence at arbitrarily high depletion rates, Fig. 6
suggests that populations with abruptness in the onset of density dependence can
not persist at arbitrarily high depletion rates.

4. Discussion

Our analysis implies populations that go extinct whenever achieving too high or too
low densities will exhibit one of three types of “observable” dynamics. Extinction
occurs for all initial population densities whenever the populations have per-capita
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Fig. 5. Bifurcation diagrams for f (x) = max{x exp(r(1 − x)) − d, 0}. In (a), the shading
and labels are as in Fig. 2. In (b), r = 2.6 and for each d value a random initial condition is
selected and f 100(x) is plotted.
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γ

Fig. 6. Bifurcation diagrams for f (x) = max{ 2x

1+xγ }. In (a), the shading and labels are as in
Fig. 2. In (b), γ = 9 and for each d value a random initial condition is selected and f 100(x)
is plotted.
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growth rates that are strictly less than one for all densities. Bistability in which
the populations either persist or go extinct depending on initial conditions occurs
when the maximum size of a growing population lies below a critical threshold.
Essential extinction in which populations go extinct for almost every initial density
occurs when the maximum size of a growing population exceeds a critical threshold.
Variation in environmental parameters such as depletion rates, carrying capacities,
intrinsic rates of growth or abruptness of density dependence can result in transi-
tions between these three types of dynamics. The transition between bistability and
extinction corresponds to a saddle-node bifurcation, while the transition between
bistability and essential extinction correspond to a basin boundary collision that
Abraham & Stewart call a chaotic blue sky catastrophe [1,9].

Our results in conjunction with the work of Gyllenberg, Osipov, and Söderbacka
[10] shows that when the maximum size of a population is too large, the population
can exhibit long-term chaotic transients prior to extinction. As first noted by Has-
tings and Higgins [12], the importance of chaotic transients in ecological systems
is two fold. First, the time scale of ecological interest is often relatively short, say
tens or hundreds of years. Hence, predictions about the long-term behavior of the
system may provide little or no information about the short-term behavior. Second,
long-term transients can give the appearance of being the system’s final behavior,
and then, without warning, shift to an entirely different dynamical behavior. In our
case, populations can persist for hundreds of generations, and then suddenly go
extinct without any underlying change in the parameters.

Applying the analysis to the Logistic, Ricker and generalized Beverton–Holt
maps with constant depletion, we confirm the observations of Sinha & Parthasara-
thy [26] and Vandermeer & Yodzis [28] that gradual changes in depletion rates as
well as the rate at which limiting nutrients are supplied to an ecosystem can have
unexpectedly dramatic consequences for population persistence. For slow growing
populations that exhibit a relatively gradual onset of density dependence, the effect
of enrichment or depletion is qualitatively similar to the continuous-time model.
Namely, there is a critical depletion rate above which populations are driven to
extinction for all initial densities and below which persistence is possible. Alterna-
tively, there is a critical level of enrichment below which extinction is certain and
above which persistence is possible. For fast growing populations or populations
that exhibit an abruptness in the onset of density dependence, there exist two or
more critical levels of depletion and enrichment. Consequently, populations are able
to persist at relatively high levels of depletion even when lower rates of depletion
result in extinction. Alternatively, if the depletion rate corresponds to the difference
between the rates of immigration and emigration, then an increased flux of immi-
grants (i.e., a reduced depletion rate) can lead to extinction. These multiple critical
levels also imply that populations persisting at relatively high levels of depletion
can suddenly disappear if the system is enriched. Hence, fast growing populations
or populations that exhibit an abruptness in the onset of density dependence give
rise to an extreme form of the “paradox of enrichment” in which increasing the
supply of limiting nutrients not only destabilizes the dynamics [24] but also leads
to eventual extinction. An explanation for these counter-intuitive behaviors is that
decreasing depletion rates or enriching the system increases population variabil-
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ity. This increased variability results in lower minimum population densities that
coupled with constant depletion lead to extinction. This theoretical explanation is
borne out in avifaunal field studies that have shown bird species with more vari-
able densities on the main land are more prone to extinction on nearby land bridge
islands [15].

Hastings [11] and Stone [27] have shown that passive dispersal and immigra-
tion, respectively, can stabilize chaotic dynamics. Alternatively, our study shows
that increasing emigration or harvesting rates, or decreasing the rate at which lim-
iting nutrients enter the system can also stabilize chaotic dynamics by shifting the
dynamics from chaotic semistability to persisting at a linearly stable fixed point.

In conclusion, our analysis shows that gradual environmental changes can have
consequences that are different from what conventional wisdom would indicate.
Since most ecological communities involve several interacting species, reside in a
spatially heterogeneous environment, and are influenced by many environmental
factors, there is a need to further investigate how these additional complexities
influence sudden population disappearances. For instance, McCann & Yodzis [19]
have shown that in tritrophic systems the top predator species can exhibit sudden
disappearances as the system is enriched. The mechanism behind this disappear-
ance appears to be the collision of an attractor supporting all species with the basin
of an attractor that only supports the two lower trophic species. Understanding other
conditions for which these unforeseeable jumps occur between ecological config-
urations is likely to provide future challenges for ecologists and mathematicians.

5. Proof of Theorem 1

To prove Theorem 1, it will be necessary to adapt some basic tools for maps with
negative Schwarzian derivative to our context. The text of de Melo and van Stri-
en [7] provides a good survey of these methods. Singer [25] noted two important
properties of functions with negative Schwarzian derivative. We state these prop-
erties as Lemmas, and refer the reader to the text of de Melo and van Strien [7] for
a proof.

Lemma 2. If I is a compact interval, f : I → R is C3 and x, f (x), . . . , f n−1(x) ∈
I , then

Sf n(x) =
n−1∑
i=0

Sf (f i(x))|Df i(x)|2.

In particular, this composition formula for the Schwarzian derivative implies
that if f has negative Schwarzian derivative along an orbit, then f n has negative
Schwarzian derivative along that orbit.

Lemma 3 (Minimum Principle). If I = [α, β] is a compact interval and f : I →
R is a C3 function that satisfies Df (x) �= 0 for all x ∈ I and Sf (x) < 0 for all
x ∈ I , then

|Df (x)| > min{|Df (α)|, |Df (β)|} for all x ∈ (α, β).
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Using these lemmas, we prove a modified version of Singer’s Theorem [25]. To
state this theorem, we recall a few definitions. The orbit of a point x ∈ R+ is given
by O(x) = ∪n≥0f n(x). If f n(p) = p and f i(p) �= p for all 1 ≤ i ≤ n − 1, then
p is a periodic point of period n. The basin of attraction of a periodic point p is
the set of points x ∈ R+ such that limn→∞ dist(f n(x),O(p)) = 0. The immediate
basin of attraction of a periodic orbit is the union of the connected components
of the basin of attraction that contain a point of the periodic orbit. We say that a
periodic orbit is attracting provided the immediate basin of attraction contains an
open interval. In particular, a semi-stable periodic point is attracting. A periodic
point p of period n is a neutral periodic point provided that |Df n(x)| = 1.

Theorem 3 (Modified Singer’s Theorem).If f : R+ → R+ satisfies (A1)–(A5),
then

1. The immediate basin of attraction of every attracting periodic orbit in [a, b]
contains the critical point c of f .

2. For each n ≥ 1, f n has a finite number of fixed points.
3. Each neutral periodic orbit is attracting.

Proof. To prove the first assertion, suppose that p > 0 is an attracting periodic
point of period n for f . Since p is attracting, |Df n(p)| ≤ 1. Let B be the imme-
diate basin of attraction for O(p). Since f = 0 on [0, a] ∪ [b, ∞), it follows that
B ⊂ (a, b). Since B is forward invariant, f i(B) ⊂ (a, b) for all i ≥ 0. Suppose,
to the contrary, c /∈ B. Let Bp be the connected component of B that contains p.
The chain rule implies that Df n(x) �= 0 for all x ∈ Bp. Hence, Df 2n(x) > 0 for
all x ∈ Bp. Since Bp is a connected component of B and f 2n restricted to Bp is
strictly increasing, f 2n(Bp) = Bp and f 2n(x) = x for x ∈ ∂Bp. Since all points in
Bp are attracted to the orbit of p, it must be that |Df 2n(x)| ≥ 1 for x ∈ ∂Bp. Since
f has negative Schwarzian derivative on [a, b] and f i(B) ⊂ (a, b) for all i ≥ 0,
Lemma 2 implies that f 2n restricted to Bp has negative Schwarzian derivative. The
Minimum Principle applied to f 2n restricted to Bp implies that |Df 2n(x)| > 1 for
all x ∈ intBp. This contradicts the fact that f 2n(Bp) = Bp. Hence, the immediate
basin of O(p) must contain c.

To prove the second assertion, assume to the contrary that there exists an n such
that f n has an infinite number of fixed points. Since the only fixed point of f n

restricted to [0, a] ∪ [b, ∞) is 0, we can find a sequence of distinct fixed points
xk ∈ (a, b) for f n that converge to a point x ∈ (a, b). Continuity of f n implies that
x is a fixed point of f n. For every k, let Jk denote the interval whose end points are
given by xk and xk+1. The interiors of these intervals are non-empty as xk+1 �= xk .
Since xk+1 = f n(xk+1) and xk = f n(xk), the Mean Value Theorem implies that
there exists an x∗

k in Jk such that Df n(x∗
k ) = 1. Since x∗

k converges to x, continuity
of Df n implies that Df n(x) = 1. By choosing k appropriately large, we can find
an interval J ∗ whose endpoints are x and x∗

k such that there exists a x∗
m contained in

the interior of J ∗, f n(J ∗) ⊂ [a, b] and Df n(x) �= 0 for all x ∈ J ∗. By Lemma 2,
f n restricted to J ∗ has negative Schwarzian derivative. By the Minimum Principle,
1 = |Df n(x∗

m)| > min{|Df n(x)|, |Df n(x∗
k )|} = 1 which is impossible. Hence,

f n must have only a finite number of fixed points.
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To prove the final assertion, assume that p > 0 is a neutral periodic point of
period n. Then Df 2n(p) = 1. Since there are only a finite number of periodic
points of period ≤ 2n, there is an interval (α, β) ⊂ (a, b) containing p such that
f 2n(x) �= x for all x ∈ (α, p) ∪ (p, β). If f 2n(x) < x for all x ∈ (p, β) or
f 2n(x) > x for all x ∈ (α, p), then the orbit of p is attracting (possibly semi-sta-
ble). Suppose to the contrary that f 2n(x) > x for all x ∈ (p, β) and f 2n(x) < x for
all x ∈ (α, p). Then there exists an interval (α′, β ′) ⊂ (α, β) containing the point p,
satisfying f 2n((α′, β ′)) ⊂ (a, b), Df 2n(x) �= 0 for all x ∈ (α′, β ′), Df 2n(α′) > 1
and Df 2n(β ′) > 1. Lemma 2 implies that f 2n restricted to (α′, β ′) has negative
Schwarzian derivative. The Minimum Principle applied to f 2n restricted to [α′, β ′]
implies that |Df 2n(p)| > 1. This contradicts our assumption that p is a neutral
periodic point.

Now, we are ready to prove Theorem 1.

Proof (Theorem 1). Let f : R+ → R+ be a map that satisfies (A1)–(A5). Assume
that f has at least two fixed points. Define p = min{x : x > 0, f (x) = x} and
p∗ = max{f −1(p)}.

Suppose that f has exactly two fixed points, 0 and p. Since f = 0 on [0, a], the
definition of p implies that f (x) < x for all x ∈ (0, p). We claim that f (x) ≤ x for
all x ∈ (p, ∞). Suppose to the contrary that f (x) > x for some x ∈ (p, ∞). Since
0 and p are the only fixed points, it would follow that f (x) > x for all x ∈ (p, ∞).
In particular, f (b) > 0 which violates assumption (A2). Therefore, f (x) ≤ x

for all x ∈ R+. Since x ≥ f (x) ≥ p for x ∈ [p, p∗], limn→∞ f n(x) = p for
x ∈ [p, p∗].

For the remainder of the proof, assume that f has three or more fixed points.
We begin by proving two useful facts:

Df (p) > 1 (2)

and
any fixed point in (p, c] is linearly stable. (3)

To prove (2), suppose to the contrary that Df (p) ≤ 1. If Df (p) < 1, then there
exist x ∈ (a, p) such that f (x) > x. Since f (a) = 0, the Intermediate Value
Theorem implies that f (x) = x for some x ∈ (a, p) which contradicts our choice
of p. If Df (p) = 1, then by the Modified Singer’s Theorem p is an attracting fixed
point and its immediate basin of attraction contains [p, c]. Consequently, f (x) < x

for all x ∈ (p, c]. Since f (c) is the maximum value that f takes on, f (x) < x for
all x ∈ (p, ∞). Hence, f has no fixed points in the interval (p, ∞) which contra-
dicts our assumption that f has at least three fixed points. Therefore, Df (p) > 1.
To prove (3), suppose that q ∈ (p, c) is an fixed point for f . Since f (p) = p

and f (q) = q, the Mean Value Theorem implies there exists a point y ∈ (p, q)

such that Df (y) = 1. Since |Df (p)| > 1, the Minimum Principle applied to f

restricted to [p, q] implies that

|Df (q)| = min{|Df (p)|, |Df (q)|} < |Df (y)| = 1.
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Now, suppose that f 2(c) > p. We have two cases to consider. First, suppose
that q ∈ (p, p∗) is a linearly stable fixed point. By the Modified Singer’s Theorem
q is the only linearly stable fixed point in (p, p∗) and the immediate basin of at-
traction of q includes the orbit of c. Hence, [min{c, q}, max{c, f (c)}] is contained
in q’s immediate basin of attraction. The assertion in (3) implies that f (x) > x

on (p, min{q, c}) as q is the only linearly stable fixed point in (p, p∗). Therefore,
(p, max{c, f (c)}] is contained in q’s immediate basin of attraction. As f maps
[f (c), p∗) into (p, f (c)], (p, p∗) lies in q’s immediate basin of attraction. Second,
suppose that (p, p∗) contains no linearly stable fixed point. The assertion in (3)
implies that f has no fixed point in (p, c]. Hence, f (x) > x for all x ∈ (p, c]. It fol-
lows that the orbit of every point x ∈ (p, p∗) enters the interval I = [f 2(c), f (c)].
To show that f (I) ⊆ I , we note that f maps [max{c, f 2(c)}, f (c)] into I as
Df < 0 on (c, p∗]. Since f (x) > x on (p, c], f maps [min{c, f 2(c)}, c] into I .
Therefore, f (I) ⊆ I .

Suppose that f 2(c) = p. Since Df > 0 on [p, c) and f (p) = p, f maps [p, c]
onto [p, f (c)]. Since Df < 0 on (c, f (c)] and f 2(c) = p, f maps [c, f (c)] onto
[p, f (c)]. Hence, f (I) = I where I = [p, f (c)]. To show that this interval admits
complex dynamics, we recall a few definitions. A Borel probability measure µ on I

is called f -invariant provided that µ(A) = µ(f −1A) for any Borel set A ⊂ I . We
say an f -invariant measure µ is ergodic on I provided that µ(A)µ(I\A) = 0 for
any Borel set A ⊂ I . An f -invariant measure µ is called an absolutely continuous
invariant measure on I provided that µ(A) > 0 for a Borel set A ⊂ I if only if
the Lebesgue measure of A is positive. Using the following theorem [21], we show
that f restricted to [p, f (c)] admits an ergodic absolutely continuous invariant
measure.

Theorem 4 (Misiurewicz 1981).Let I be a compact interval and f : I → I a
map satisfying the following conditions:

1. f is C3,
2. f has a single critical point c,
3. f has negative Schwarzian derivative,
4. there exists no ni ↑ ∞ such that limi→∞ f ni (c) = c and
5. f has no attracting periodic points,

then f admits an ergodic absolutely continuous invariant probability measure µ

and
∫

ln |Df |dµ > 0.

(A1)–(A5) imply that f restricted to I = [p, f (c)] satisfies the first three con-
ditions of Theorem 4. Since f 2(c) = p and f (p) = p, it follows that f n(c) = p

for all n ≥ 2. Hence, the fourth condition of Theorem 4 is satisfied. Since p is
linearly unstable and f 2(c) = p, the Modified Singer’s Theorem implies that f

restricted to [p, f (c)] has no attracting periodic points. Theorem 4 implies that f

restricted to [p, f (c)] admits an ergodic absolutely continuous invariant measure
µ. The Birkhoff Ergodic Theorem (see, e.g., [16]) implies that for Lebesgue almost
every x ∈ [p, f (c)],

lim
n→∞

1

n
ln |Df n(x)| =

∫
ln |Df |dµ > 0.
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Next, we show that the orbit of Lebesgue almost every x ∈ [p, f (c)] is dense
in [p, f (c)]. For every natural number k and 1 ≤ m ≤ k, define (k,m(x) = 1
if x ∈ [p + (f (c) − p)m−1

k
, p + (f (c) − p)m

k
] and 0 otherwise. The Birkhoff

Ergodic Theorem implies that there exists a Borel set U(k, m) ⊂ [p, f (c)] such
that µ(U(k, m)) = 1 and

lim
n→∞

1

n

n−1∑
i=0

(k,m(f i(x)) =
∫

(k,mdµ > 0 for all x ∈ U(k, m). (4)

If U = ∩k,mU(k, m), then µ(U) = 1 and U has full Lebesque measure in [p, f (c)].
Since (4) holds for x ∈ U , k ≥ 1, and 1 ≤ m ≤ k, the orbit of every x ∈ U is
dense in [p, f (c)].

Suppose that f 2(c) < p. Let B be the basin of attraction of 0. Since f (x) < x

for all x ∈ (0, p), [0, p) ⊂ B. Since f 2(c) ∈ [0, p), it follows that f ((f (c), ∞)) ⊂
[0, p). Hence, [0, p) ∪ (f (c), ∞) ⊂ B. Therefore, B is an open set in R+. Define
* = R+\B. * is compact. Since f −1(B) ⊂ B, it follows that f (*) ⊆ *. To
show that * has Lebesgue measure zero, we make use of the following two results.

Theorem 5 (Mañé 1987).Let I be a compact interval and g : I → I a C2 map.
If * ⊂ I is a compact set satisfying

1. g(*) ⊆ * and
2. * contains no critical points, neutrally stable periodic points or linearly stable

periodic points,

then * is a hyperbolic repelling set: there exists C > 0 and λ > 1 such that
|Dgn(x)| > Cλn for all n ≥ 1 and x ∈ *.

The second result is proven in de Melo and van Strein [7, Theorem III.2.6]:

Theorem 6.Let I be a compact interval and g : I → I a C2 map. If * ⊂ I is a
compact hyperbolic repelling set for g, then * has Lebesgue measure zero.

To use these theorems, choose ε > 0 such that * ⊂ (a + 2ε, b − 2ε). Let
ρ : R+ → [0, 1] be a C∞ function such that ρ = 1 on (a + 2ε, b − 2ε) and ρ = 0
on [0, a + ε) ∪ (b − ε, ∞). Define g : R+ → R by g(x) = ρ(x)f (x). Since f

restricted to [a, b] is C3, g is C3. Since the critical point of f is attracted to the
origin, the Modified Singer’s Theorem implies that f restricted to * has no neutral
periodic points or linearly stable periodic points. Since f = g and Dg = Df on
*, g restricted to * contains no critical points, neutral periodic points or linearly
stable periodic points. Mañé’s Theorem implies that * is a hyperbolic repelling set
for g. Applying Theorem 6 to g, we get that * has Lebesgue measure zero. Hence,
the basin of attraction of the origin, B = R+\*, for f has full Lebesgue measure.
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