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Global stability in consumer-resource cascades
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Abstract. Models of population growth in consumer-resource cascades (seri-
ally arranged containers with a dynamic consumer population, v, receiving
a flow of resource, u, from the previous container) with a functional response
of the form h (u/vb) are investigated. For b3[0, 1], it is shown that these
models have a globally stable equilibrium. As a result, two conclusions can be
drawn: (1) Consumer density dependence in the functional or in the per-
capita numerical response can result in persistence of the consumer popula-
tion in all containers. (2) In the absence of consumer density dependence, the
consumer goes extinct in all containers except possibly the first. Several
variations of this model are discussed including replacing discrete containers
by a spatial continuum and introducing a dynamic resource.
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1 Introduction

In theoretical ecology, much controversy has surrounded the question: what is
the correct form of the functional response (the instantaneous per-capita rate
of resource consumption by the consumer population) in population models?
In consumer-resource systems

du

dt
"f (u)u!vg (u, v)

dv

dt
"hvg(u, v)!kv

(1)
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where u is the resource density, v the consumer density, f (u) the basal
‘‘per-capita’’ growth rate of the resource, h the consumer’s assimilation
efficiency, and k the consumer’s respiration rate, the functional response,
g(u, v), plays an essential role. The simplest possible functional response,
introduced by Lotka (1925) and Volterra (1926) and based on the law of mass
action, is linear, g (u, v)"au. However, since unsaturated per-capita consump-
tion rates (i.e., sup g (u, v)"O) are a physiological impossibility, alternative
resource-dependent, g (u, v)"h (u), functional responses were introduced to
increase realism (e.g., Ivlev 1961; Holling 1966), but even these suffered from
unrealistic predictions such as the paradoxes of enrichment (Rosenzweig 1971)
and biological control (Luck 1990).

As indicated in Equation 1, the functional response may also depend on
the consumer density. Mutual interference may result in a decrease of search-
ing efficiency as consumer density increases (Royama 1971; Hassell 1978).
Alternatively, finite resources (even ones that regenerate instantaneously)
discretely partitioned in space may have bounded extraction rates determined
by resource density (i.e., there exists a K'0 such that Pg(N, P)6KN for all
P'0). Watt (1968) developed a one-parameter family of functional responses
to incorporate all of these effects. It is of the form g(u, v)"h (u/vb) with
h(x)"1!exp(!x) and b3[0, 1]. Although presented as an integrated
functional response, Royama (1971) reinterpreted it as a instantaneous
functional response that generalizes the toss-a-ring model: the area of the
ring tossed by the consumer diminishes by a factor of 1/vb due to mutual
interference.

The special cases of b"1 has received particular attention and
has become known as a ratio-dependent functional response in the literature.
This functional response was used in biologically detailed models for simula-
ting agricultural ecosystems by Gutierrez et al. (1977, 1993). Its dynamics in
food chains was investigated by Getz (1984) and Arditi and Ginzburg (1989) in
the bitrophic setting, and by Gutierrez et al. (1994) in the tritrophic setting.
The parameters of particular interest for h (u/v) are h

=
"lim

x?=
h(x), the

maximal ingestion rate of the consumer, and h@(0), the maximal resource
extraction rate (i.e., h (u/v) v6h@(0) u and lim

v?=
h (u/v) v"h@(0) u). Notice that

if the intrinsic rate of increase for the resource exceeds the maximal extraction
rate then both species of Equation 1 persist.

2 Main results

To compare the resource-dependent and ratio-dependent functional response
models, Arditi et al. (1991) designed a set of experiments: Filter feeding
cladocerans (the consumer) were reared in a flow-through system where water
containing food particles (the resource) was pumped into serially arranged
containers from which the consumer cannot escape. Starting with an
inoculum in each container, the consumer populations were monitored until
equilibrium was reached. To model these experiments, the following equations
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were suggested by Arditi et al. (1991),
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i

i"1, . . . , n (3)

where u
i

is the concentration of resource in the i-th container, u
0

is the
concentration of resource flowing into the first container, v

i
is the biomass of

consumer in the i-th container, c is the flow rate, h is the assimilation efficiency
of the consumer, and k is the respiration rate of the consumer. To keep the
model biologically realistic and mathematically tractable, we place the follow-
ing restrictions on h

H1: h: RPR is C1, h (0)"0 and h@(x) '0 for all x70.
H2: The limit, h

=
"lim

x?=
h(x), exists and is finite.

H3: lim
x?=

xh@ (x)"0.
H1 asserts that per-capita consumption increases with resource density. H2
asserts that per-capita ingestion rates are bounded and H3 is chosen to ensure
that there is a well defined flow given by Equation 2 when b'0. Functions
that satisfy H1—H3 include axn/(c#xn) with n71, a'0 and c'0 (Holling
1966; Getz 1984; Arditi and Ginzburg 1989) and h (x)"1!exp(!ax) with
a'0 (Ivlev 1961; Watt 1968; Gutierrez et al. 1994).

Even in environments where abiotic factors are static, respiration rates
and assimilation efficiencies are seldom constant. Overcrowding may result in
behavioral changes that increase respiration rates or may result in the produc-
tion of toxins that decrease assimilation efficiency. To capture these effects, we
extend the model in Equation 2 by permitting h and k to be C1 functions of
v with following restrictions:

P1: 0(h (v)61 and k (v)'0 for all v70.
P2: h@(v)60 and k@(v)70 for all v70.
P3: h (0) h

=
!k (0)'0.

The biological interpretation of P1—P2 is clear. P3 asserts that the intrinsic
rate of increase of the consumer is positive. When P3 is not satisfied, the
consumer goes extinct.

Theorem 1 Assume h is a function that satisfies H1—H3 and that h and k are
functions that satisfy P1—P3. ¸et b3[0, 1], c'0 and u

0
'0 be given. ¹hen

there exists an equilibrium, S*3R2n
`

, of
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Global stability in consumer-resource cascades 39



that is globally stable (i.e., any solution S(t) to Equation 4 with S (0)'0 satisfies
S(t)PS* as tPO).

Remark 1. Given a vector �"(v
1
, . . . , v

n
)3Rn, we write �'0 if v

i
'0 for all

i and Rn
`
"M�3Rn: �70N.

A proof of Theorem 1 is found in Appendices A for b'0 and B for b"0
and is based upon two observations: (1) any container receiving a constant
flow of resource has a globally stable equilibrium and (2) the only coupling
between adjacent containers, say i and i#1, is the flow of resource from the
i-th container to the i#1-th container. If we consider an initial consumer
population distribution in a cascade of containers, then (1) implies that the
first container in the cascade approaches a unique steady state. Furthermore,
(1) and (2) imply that the second container eventually receives a constant flow
of resource and is asymptotic to a system with a globally stable equilibrium.
Thus, global stability moves down the cascade and the cascade dynamics are
determined by the equilibria of Equation 4.

Let us consider the case described by Arditi et al. (1991) where h and k are
held constant, say h,h

0
and k,k

0
. In this case, the non-trivial equilibrium

is given recursively by solutions to

cu
i~1

"cvb
i
A#v

i
k
0
/h

0
(5)

u
i
"Avb

i
,

where A"h~1 (k
0
/h

0
). When b'0, Equation 5 always admits a positive

solution, S*"(u*, �*)'0 (see Appendix A). When b"0, S*"(u*, �*) takes
one of two forms:

(u*, �*)"G
((A, A, . . . , A), (v*

1
'0, 0, . . . , 0)) if u

0
7A

((u
0
, . . . , u

0
), (0, . . . , 0)) else

(see Appendix B). In other words, when b"0, the consumer populations goes
extinct in all containers expect possibly the first. Alternatively, when b'0, all
containers sustain a positive consumer population. This surprising fact was
first noticed by Arditi et al. (1991) in the special cases of b"0 and b"1.
b"1 is of particular interest as it produces an equilibrium of the form
(u*

i
, v*

i
)"ci~1(u*

1
, v*

1
) for some c3 (0, 1) and accurately describes several of

the experimental results of Arditi et al. (1991).

Remark 2. To see how the equilibria vary as a function of the parameter b, we
refer the reader to the PDE analog of Equation 4 discussed in the Concluding
remarks.

As all containers asymptotically receive a constant concentration of re-
source, this bifurcation to persistence is best understood by examining the
isocline structure of the first container. For all values of b, the resource isocline
is given by a decreasing function of v

1
with a v

1
-intercept at u

1
"u

0
and
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a vertical asymptote at u
1
(u

0
. When b"0, the consumer’s isocline is vertical

and is given by u
1
"A. Therefore, if the incoming resource concentration

remains at or below this threshold, (i.e., u
0
6A), the consumer population is

doomed, else it exploits the resource to this threshold. Either way, the
incoming concentration into the second container approaches a value that is
less than or equal to A. Consequently, all containers except the first receive
insufficient resource to sustain a consumer population. This over exploitation
occurs because the consumer is only resource-limited and has no negative
self-feedbacks. When b'0, a negative self-feedback is introduced in the
consumer’s functional response and the consumer’s isocline, u

i
"vb

i
A, bi-

furcates to a monotonically increasing curve that passes through the origin.
Therefore, at any incoming resource concentration there are consumer densi-
ties with positive pre-capita growth rates and the consumer population is able
to persist in all containers

An alternative mechanism that produces persistence in all containers is
a negative self-feedback in the numerical response of the consumer (Ruxton
and Gurney 1992). For example, assume respiration rates increase with
consumer density (i.e., k@(v)'0 for all v'0) or assimilation efficiencies
decrease with density (i.e., h@(v)(0 for all v(0) and b"0. When the incom-
ing resource concentration in the i-th container is constant, the resource
isocline is as before, and the consumer isocline is monotonically increasing
with a u

i
-axis intercept to the right of the origin. This intercept determines

a minimal threshold of resource concentration for the consumer but is bal-
anced by the consumer’s inability to exploit the resource to this threshold.
Therefore, as long as the resource concentration that flows into the first
container remains above this threshold, the consumers persist in all containers
(see Appendix B).

3 Concluding remarks

Theorem 1 suggests two types of mechanisms that lead to the global stability
of a strictly positive equilibrium for a consumer-resource cascade model. They
involve negative self-feedbacks introduced into either the functional or numer-
ical response. In the first case, resource acquisition is limited by the effects of
mutual interference and interspecific competition. In the second case, resource
allocation is limited by the effects of overcrowding on assimilation, conversion
and respiration. In the absence of these feedbacks, the consumer population is
driven to extinction in all containers except the first. Although specific
formulations of these two effects were made in Theorem 1, other formulations
of consumer dependence in the functional or numerical response are likely to
produce similar results.

We conclude with two variations of the model presented in this manu-
script.

In addition to describing Arditi et al. (1991)’s experiments, Equation 4 may
be used to describe consumer populations in ponds and lakes along a river’s
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path. However, a simpler and more common scenario are rivers and streams,
themselves, with a sessile consumer (e.g., diatoms, substrate feeders) and
a freely flowing resource. In this case, discrete ‘‘containers’’ are replaced by
a spatial continuum. If we let u(t, x) and v(t, x) represent the resource and
consumer distributed over one dimensional space, R

`
, then the dynamics of

this system can be represented as

u
t
"!cu

x
!vh(u/vb)

(6)
v
t
"hvh(u/vb)!kv

with initial conditions u (t, 0)"u
0

for all t70 and v (0, x)"f (x) for some
continuous function, f : R

`
PR

`
. Equation 6 is the PDE analog of Equation

4. When h and k are constants, the non-trivial steady states for the consumer
of Equation 6 are given by:

v(x)"G
0 b"0
((1!b)Ax#f (0)b~1)1@(b~1) b 3 (0, 1)
f (0) e~Ax b"1

where A"

k
cbhh~1 (k/h)

. When b"0 or b"1, these steady states naturally

correspond to the equilibria of Equation 2 and prompt the question: Are they
globally stable?

Until now, the resource in the cascade models has not been dynamic.
Including the effects of growth, reproduction and respiration of the resource
will produce more interesting dynamics. For example, consider

u
t
"!cu

x
#au!bu2!vh (u/vb)

v
t
"hvh (u/vb)!kv

where au!bu2 is the logistic population dynamics of the resource. It is
well known that for c"0 we can get limit cycles. But, do these limit
cycles propagate down the cascade for c'0? If they do propagate, will they
spatially dampen out and be in phase? Or will they produce spatial-temporal
chaos?

Appendix A: Proof of Theorem 1 (b'0)

The strategy behind the proof of Theorem 1 is to prove global stability of
(uR

1
, uR

2
) of Equation 4, induct on (uR

i
, vR

i
) by viewing these equations as an

asymptotically autonomous differential equation and apply results of Benaı̈m
and Hirsch (1995).

First assume b'0. In this case we need three lemmas to accomplish our
task. The first lemma shows that Equation 4 extends in a continuously
differentiable manner to certain coordinate planes.
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Lemma 1 ¸et h: R
`
PR

`
be a function that satisfies H1—H3. If b3[0, 1], then

Equation 4 extends in a C1 fashion to

M(u, �)3R2n: u'0, �70N .

Proof. Left to the reader.

Remark 3. One can show Equation 4 extends continuously to R2n
`

(but not in
a Lipschitz manner) and has unique solutions.

Lemma 2 ¸et b3(0, 1], c'0 and C'0 be given. Assume the function h
satisfies H1—H3 and the functions, h and k satisfy P1—P3. ¹hen there exists
S*3R2 with S*'0 such that if S (t) is a solution to

du

dt
"c (C!u)!vh (u/vb)

(7)
dv

dt
"h (v)vh (u/vb)!k(v)v

with S (0)'0, then
lim
t?=

S (t)"S*.

Proof. The only equilibria of Equation 7 are (C, 0) and the solutions to

u"vb h~1 A
k (v)

h (v)B (8)

cC"vbch~1 A
k (v)

h (v)B#v
k (v)

h (v)
. (9)

Let f (v) be the right hand side of Equation 9. Since (h~1)@(v)'0 (by H2 and
the inverse function theorem), P2 implies that f is strictly monotone and
increasing. Furthermore, f : R

`
PR

`
is surjective since f (0)"0 and

f (v)PO as vPO. Therefore Equations 8 and 9 have a unique positive
solution, (u*, v*). The variational matrix of Equation 7 is

A
!c!v1~bh@(u/vb) !h (u/vb)#buv~bh@(u/vb)

hv1~bh@(u/vb) h (u/vb)(h#vh@)!huv~bbh@(u/vb)!vk@!kB
and evaluated at (u*, v*) has positive determinant and negative trace. Thus
(u*, v*) is an asymptotically stable equilibrium. By H3, the variational matrix
evaluated at (C, 0) is

A
!c !h

=
0 h (0)h

=
!k (0)B

and has eigenvalues with positive (by P3) and negative real parts. By
Lemma 1, (C, 0) is an unstable equilibrium with its stable manifold lying in
the u-axis.
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Let
f (u, v)"

1

vh(u/vb)

Since f (u, v) is positive for positive u and v, the integral curves of

du

dt
"f (u, v) (c(C!u)!vh (u/vb))

(10)
dv

dt
"f (u, v) (h (v)vh(u/vb)!k (v)v)

in the positive orthant are equivalent to those of Equation 7. The divergence
of Equation 10,

!ch(u/vb) v!c(C!u) h@(u/vb) v1~b

(h(u/vb) v)2
#h@!

k@h(u/vb)#h@(u/vb) uv~1~bb

h (u/vb) 2

is strictly negative for all u(C. Therefore Equation 7 has no periodic
solutions in (0, C)](0, O). As (0, C)](0, O) is forward invariant and contains
all equilibria of Equation 7, the Poincaré—Hopf index theorem implies that
Equation 7 has no periodic solutions in R2

`
.

Let S (t) be a solution to Equation 7 such that S (0)'0. Since uR (0 for
(u, v)3(C, O)]R

`
and vR(0 whenever 0(vb h~1 (k(0)/h(0))(u, S (t) is

bounded in forward time. As S (t) is bounded, not periodic, and the equilib-
rium (C, 0) is unstable, Poincaré—Bendixson theory implies S(t) approaches
(u*, v*) as tPO. h

Lemma 3 Assume h, h, c and k are as in ¸emma 2 and C(t) is a continuous
function such that

lim
t~=

C(t)"C
=
(O .

If S(t)"(u(t), v (t)) is a solution to

du

dt
"c(C (t)!u)!vh(u/vb)

(11)
dv

dt
"h(v) vh (u/vb)!k (v) v

with S (0)'0, then
lim
t?=

S(t)"S*

where S* is given by ¸emma 2 with C"C
=

.

Proof. Since C(t)PC
=

as tPO, Equation 11 is uniformly asymptotic (with
respect to u and v) to Equation 7 with C"C

=
. Let S(t) be a solution to

Equation 11 with S (0)'0. Define the limit set of S (t) as

S
`
" Y

m;0

Z S(t) . (12)
t;m
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As S (t) is bounded, S
`

is a compact set. A theorem of Benaı̈m and
Hirsch (1995) implies S

`
is an internally chain recurrent set of the flow to

Equation 7 with C"C
=

. The only internally chain recurrent sets of Equa-
tion 7 are the two equilibria one of which is a saddle with its stable manifold
on the u-axis. Therefore S

`
"S* where S* is given by Lemma 2. h

To complete the proof of Theorem 1 for b'0, we proceed inductively. Let
S(t)"(u(t), �(t)) be a solution to Equation 4 with S(0)'0. Lemma 2 applies to
(u

1
(t), v

1
(t)) and therefore

lim
t?=

(u
1
(t), v

1
(t))"(u*

1
, v*

1
)

where (u*
1
, v*

1
) is determined by Lemma 2 with C"u

0
. Applying Lemma 3 to

(u
2
(t), v

2
(t)) with C(t)"u

1
(t), we get

lim
t?=

(u
2
(t), v

2
(t))"(u*

2
, v*

2
) .

Applying Lemma 3 n!2 more times completes the proof. h

Appendix B: Proof of Theorem 1 (b"0)

We use the same strategy as for b'0 and begin by demonstrating solutions
are bounded.

Lemma 4 ¸et h, h, c and k be as in ¸emma 2 and C(t) be a continuous bounded
function. If S (t)"(u(t), v(t)) is a solution to

du

dt
"c(C (t)!u)!vh (u)

(13)
dv

dt
"h(v)vh(u)!k (v)v

with S (0)70, then sup
t;0

D S(t) D is finite.

Proof. Let S (t) be a solution to Equation 13 with S (0)70. Pick
D'sup

t;0
C(t). Let SI (t)"(uJ (t), vJ (t)) be a solution to

uR "c (D!u)!vg(u)
(14)

vR"h (0)vg(u)!k (0)v

with S (0)"SI (0). By choice of D and P2, it sufficient to show that SI (t) is
bounded for all positive t.

Let A"h~1 (k(0)/h (0)). In Equation 14, uR (!D for all u72D. Conse-
quently there exists a positive tJ such that uJ (t)62D for all t7tJ . In Equation
14, vR is negative for all u6A and otherwise positive. Therefore, if 2D6A,
then vJ (t)6vJ (tJ ) for all t7tJ and we are done. On the other hand, suppose
2D'A. Let S*(t)"(u*(t), v*(t)) be a solution to Equation 14 with u*(0)"2D
and v*(0)'vJ (tJ ). By choosing v*(0) sufficiently large, there exists a t*'0 such
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that u*(t*)"A. The Poincaré-Bendixson theorem implies that SI (t) remains in
the bounded region defined by the v-axis, u-axis, the line u"2D, the arc
defined by MS*(t) : 06t6t*N and the line segment defined by
M(u, v*(t*)) : 06u6AN. h

Lemma 5 ¸et h, h, c, C and k be as in ¸emma 2. If S(t) is a solution to

du

dt
"c (C!u)!vh (u)

(15)
dv

dt
"h (v) vh (u)!k (v)v

with S (0)'0, then

lim
t?=

S (t)"(u*, v*)

where

(u*, v*)"G
'0 if C'A
(C, 0) else

.

and A"h~1(k(0)/h (0))).

Proof. The equilibria of Equation 15 are (C, 0) and the solutions of

vk(v)/h(v)#ch~1(k (v)/h(v))"cC (16)

u"h~1 (k (v)/h(v)) . (17)

The left hand side of Equation 16 is strictly monotone increasing as a function
of v and maps [0, O) onto [cA, O) . Thus, if C'A, there is a unique positive
solution, S*"(u*, v*), to Equations 16 and 17.

The variational matrix for Equation 15 is

A
!c!vh@(u) !h(u)

hvh@(u) h(u)(h#h@v)!k!k@vB .

Evaluated at (C, 0) the variational matrix becomes

A
!c !h (C)
0 h (0)h(C)!k (0)B .

As C'A and h is increasing (by H1), we have h(0) h(C)!k (0)'0. Therefore
(C, 0) is a saddle with its stable manifold lying in the u-axis. When C'A, the
variational matrix evaluated at (u*, v*) is

A
!c!v*h@(u*) !h (u*)

h (v*)v*h@(u*) h(u*)h@(v*)!k@(v*)v*B .

which has positive determinant and negative trace. Therefore (u*, v*) is an
asymptotically stable equilibrium.

Assume C'A. Let

f (u, v)"
1

vh (u)
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Since f (u, v) is positive for positive u and v,

du

dt
"f (u, v) (c(C!u)!vh(u))

(18)
dv

dt
"f (u, v) (h(v)vh(u)!k (v) v)

has the same integral curves in the positive orthant as Equation 15. The
divergence of Equation 18,

!ch(u)!c (C!u) h@(u)

vh(u)2
#h@(v)!

k@(v)
h (u)

(19)

is strictly negative for all 0(u(C. Therefore Equation 15 has no periodic
solutions contained in [0, C]][0, O). As all the equilibria of Equation 15 lie
in the forward invariant region [0, C]][0, O), the Poincaré-Hopf index
theorem implies there are no periodic solutions to Equation 15. Lemma 4 and
the Poincaré-Bendixson theorem imply that S(t) approaches S* as tPO.

If C6A, then the only equilibrium of Equation 15 is (C, 0). As R2
`

is
invariant, the Poincaré-Hopf index theorem implies that Equation 15 has no
periodic solutions. The Poincaré-Bendixson theorem and Lemma 4 implies
that all solutions approach (C, 0). h

Lemma 6 Assume h, h, c and k are is in ¸emma 2. let C(t) be a continuous
function such that

lim
t?=

C(t)"C
=
(O.

If S(t) is a solution to
du

dt
"c (C(t)!u)!vh(u)

(20)
dv

dt
"h (v) vh(u)!k (v) v

with S (0)'0, then
lim
t?=

S (t)"S*

where S* is given by ¸emma 5 with C"C
=

.

Proof. When C
=
'A"h~1(k (0)/h(0)), the proof is analogous to Lemma 3.

Assume C
=
6A. Equation 20 is uniformly asymptotic to Equation 15 with

C"C
=

. By Benaı̈m and Hirsch (1995), we need to show the only internally
chain recurrent set in the positive orthant of Equation 15 (with C"C

=
) is the

fixed point (C
=
, 0). If C

=
(A then (C

=
, 0) is a stable equilibrium (see proof of

Lemma 5) and it is the only internally chain recurrent set. If C
=
"A, then by

the Poincaré-Bendixson theory the only other candidates for an internally
chain recurrent set are the homoclinic loops in an elliptic sector of (C

=
, 0).

However, by Equation 19 there is a neighborhood of this point that admits no
homoclinic loops and hence no elliptic sectors. h
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To complete the proof of the theorem, proceed inductively as in the
conclusion of Appendix A.
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