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abstract: Biological invasions, including infectious disease out-
breaks and biocontrol introductions, often involve small numbers of
individuals arriving in spatially heterogeneous environments. Small
numbers lead to demographic stochasticity, and spatial heterogeneity
means that establishment success depends critically on the intro-
duction sites and movement patterns of invaders. We present a gen-
eral stochastic modeling framework to address how spatial hetero-
geneity and movement patterns determine establishment success,
population growth, and rates of spatial spread. For dispersal-limited
populations, our analysis reveals that spatial heterogeneity increases
the expected population growth rate and that local reproductive
numbers determine establishment success. Higher dispersal rates de-
crease the expected population growth rate but can enhance estab-
lishment success, particularly when movement patterns are positively
correlated with local reproductive numbers. We also find that several
small, randomly distributed propagules of invaders are more likely
to succeed than a single large propagule. Even if invasions are ul-
timately successful, there may be substantial time lags before an
invader reaches observable densities. These time lags are longer for
invasions into patches where extinction risk is high and in landscapes
where metapopulation-scale population growth rate is low, while the
opposite holds true for rates of spatial spread. Sensitivity analysis of
our models provides guidance for control efforts.

Keywords: spatial heterogeneity, biological invasion, infectious disease
outbreaks, propagule pressure, multitype branching processes, meta-
population ecology.

Introduction

Understanding the fate of an invading organism is one of
the most fundamental issues in ecology, evolution, and
epidemiology. The mathematical theory of invasions has
contributed greatly to our understanding of ecological pro-
cesses (McArthur and Wilson 1967; Law and Morton 1996;
Caswell 2001; Haccou and Vatunin 2003) and the epide-
miology of infectious disease outbreaks (May et al. 2001;
Lloyd-Smith et al. 2005). Invasions typically involve small
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numbers of individuals, so demographic stochasticity plays
a crucial role. This stochasticity makes the outcome of any
particular invasion attempt unpredictable and greatly
complicates the analysis of empirical data to estimate key
quantities, such as the likelihood of establishment success,
rates of population growth, and rates of spatial spread
(Facon and David 2006). Since these likelihoods and rates
depend on demographic rates that vary spatially, the initial
distribution of an invading organism and its patterns of
movement can influence the invasion process (Duncan et
al. 2003; Pyšek and Hulme 2005). Here, we introduce and
analyze a general stochastic model of invasion dynamics
in a spatially heterogeneous environment with the aims of
developing a conceptual framework to guide our inter-
pretation of empirical patterns and aiding in the design
of surveillance and control programs.

Demographic stochasticity, caused by chance events in
individual survivorship and reproduction, produces ran-
dom fluctuations in population sizes. Using branching
process and diffusion approximations, theoreticians have
examined the influence of demographic stochasticity on
establishment success and population growth (McArthur
and Wilson 1967; Gilpin and Soulé 1986; Mangel and Tier
1994; Haccou and Iwasa 1996; Fox 2005; Lloyd-Smith et
al. 2005), and many of these studies have helped to guide
and unify empirical research. The role of individual and
temporal heterogeneity has been a particularly important
theme in the past decade. For instance, variation of de-
mographic rates among individuals can increase the
chance of invasion success if the demographic rates of
individuals are positively correlated with their parents (Fox
2005). Without these correlations, individual heterogeneity
can reduce the chance of invasion success but result in
more explosive invasions when establishment occurs
(Lloyd-Smith et al. 2005). Alternatively, in temporally het-
erogeneous environments, temporal patterns of invasion
attempts can dramatically influence the likelihood of in-
vasion success. For example, sequential invasion attempts
by few individuals are more likely to succeed than a single
invasion attempt involving many individuals (Haccou and
Iwasa 1996), although the presence of an Allee effect may
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reverse this trend (Hopper and Roush 1993; Grevstad
1999; Leung et al. 2004). These studies, however, do not
examine the effects of spatial heterogeneity on establish-
ment success, population growth, or spatial spread.

Biological invasions proceed in spatially heterogeneous
environments. This spatial heterogeneity may be generated
by variation in abiotic factors, such as temperature, pre-
cipitation, sunlight, and nutrient availability, or in biotic
factors, such as densities of resources, competitors, and
predators (Melbourne et al. 2007). The importance of this
heterogeneity has been demonstrated in numerous exper-
imental and observational studies (Lonsdale 1993; Schoe-
ner and Spiller 1995; Levine 2000; Jules et al. 2002; Miller
et al. 2002; Davies et al. 2005; Pyšek and Hulme 2005).
For example, Schoener and Spiller (1995) found that in-
vasion success of spiders was greater on islands without
lizard predators than on islands with lizards. Alternatively,
manipulative field experiments by Levine (2000) dem-
onstrated the importance of both spatial heterogeneity and
propagule pressure for the invasion success of alien plants
into riparian communities. Patch-level heterogeneity aris-
ing from varying degrees of community biodiversity re-
sulted in a negative correlation between local diversity and
the probability of invasive seed establishment. However,
this pattern was reversed at large spatial scales as a result
of correlations between propagule pressure and local
diversity.

Despite this widespread empirical evidence and the clear
need for a general conceptual framework of how spatial
heterogeneity influences biological invasions, only a few
studies have moved toward this aim (Hastings et al. 2005;
Melbourne et al. 2007). A key theme in previous studies
has been the influence of spatial heterogeneity on the rate
of spatial spread. Low-quality habitats interspersed with
higher-quality habitats can dramatically reduce rates of
spatial spread (Shigesada et al. 1986, 1995) or lead to prop-
agation failure when there are Allee effects (Keitt et al.
2001). Spatial heterogeneities also generate spatial corre-
lations that alter invasion dynamics. Using deterministic
models, Chesson (2000) showed that positive correlations
between an organism’s spatial distribution and within-
patch fitness result in higher invasion rates. Similarly, Fa-
con and David’s (2006) analysis of stochastic patch oc-
cupancy models found that variation in patch sizes creates
a positive correlation between colonization and emigration
rates and that this correlation increases rates of spatial
spread. Despite this progress, none of these studies account
for demographic stochasticity in within-patch population
growth, which is a key factor in the early stages of invasion.

The role of spatial heterogeneity has received more at-
tention in the infectious disease literature, in part because
geographic space and “social space” (i.e., contact patterns
in a population) can be treated using the same theoretical

frameworks. A central concept in the analysis of disease
invasions is the basic reproductive number, R0, which is
defined as the expected number of individuals infected by
a typical infectious individual in a susceptible population.
R0 acts as a threshold parameter for invasion success (An-
derson and May 1991). A seminal study by Diekmann et
al. (1990) presented a method to calculate R0 for hetero-
geneous populations, and work by Adler (1992) showed
that accounting for heterogeneity always increases R0 or
leaves it unchanged compared with average-based depic-
tions of populations. These studies augmented an impor-
tant body of deterministic models highlighting the crucial
role of high-transmission “core groups” in fueling epi-
demics (Hethcote and Yorke 1984; May and Anderson
1987; Jacquez et al. 1988; Dushoff and Levin 1995). Once
again, theoretical work on stochastic dynamics of out-
breaks in spatially heterogeneous populations has been
limited, although a number of studies have applied data-
driven simulation models to particular outbreaks (Keeling
et al. 2001; Smith et al. 2002; Riley et al. 2003; Haydon
et al. 2006). These studies have consistently highlighted
the importance of spatial heterogeneity for invasion
dynamics.

Here, we introduce a general stochastic modeling frame-
work to address how demographic stochasticity, spatial
heterogeneity, and patterns of dispersal influence estab-
lishment success, population growth, and spatial spread.
The framework is sufficiently flexible to account for large
or small networks of patches, patch-specific demographic
rates representing abiotic or biotic sources of heteroge-
neity, and complex patterns of dispersal. Our analysis is
motivated by understanding four questions. Since invasive
populations can invade only when their expected growth
rate is positive, our analysis addresses how the expected
growth rate of a population depends on its dispersal rate,
its movement patterns, and spatial heterogeneity in its
demographic rates. Surprisingly, we find that dispersal al-
ways decreases the expected rate of population growth. To
reconcile this result with empirical observations that dis-
persal can enhance establishment success, we derive an-
alytic results to understand how the likelihood of estab-
lishment depends on where the invaders arrive and how
quickly they disperse. Motivated by empirical findings in
the biological invasion and biocontrol literatures (Lock-
wood et al. 2005; Colautti et al. 2006), we also examine
how two forms of propagule pressure—many individuals
arriving in a few patches versus few individuals arriving
in many patches—influence establishment. Finally, since
understanding time lags and rates of spatial spread is crit-
ical for management efforts to control invaders (Keeling
et al. 2001, 2003; Crooks 2005), our analysis concludes by
providing a conceptual framework to understand how spa-
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Figure 1: a, Transition rates for an individual in patch i. b, Asymptotic population growth rate (l) as a function of the mean dispersal rate (m).

tial heterogeneities may accelerate spatial spread or reduce
time lags.

Model and Methods

We consider a finite population living in a spatially het-
erogeneous landscape consisting of n patches. Our model
is a continuous-time, spatially explicit stochastic model
that can be analyzed using the theory of multitype branch-
ing processes (Harris [1963] 2002; Athreya and Ney [1972]
2004).

The Stochastic Modeling Framework

Let denote the number of individuals in patch i atN (t)i

time t. The population dynamics within patch i are de-
termined by patch-specific per capita birth rates andbi

per capita death rates . When the model is applied todi

disease outbreaks, these parameters describe the popula-
tion dynamics of infectious individuals; for example, isbi

the per capita transmission rate for infectious hosts in
patch i (whereby new infectious hosts are “born”), and

is the rate at which hosts leave the infectious state bydi

death or recovery. Movements between patches are deter-
mined by the per capita dispersal rates from patch i todij

patch j. To examine how the mean dispersal rate influences
invasion dynamics, we rewrite as , whered mm m pij ij

is the mean emigration rate and is(1/n) � d m p d /mij ij iji(j

the dispersal rate from patch i to patch j normalized by
the mean emigration rate.

To account for demographic stochasticity, the popula-
tion dynamics are modeled by a continuous-time branch-
ing process with the aforementioned transition rates (fig.

1a). Roughly, these transition rates assert that over a small
time interval of length Dt, the probability of an individual
in patch i giving birth is , dying is , and dispersingb Dt d Dti i

to patch j is . To simulate these branching processesmm Dtij

(fig. 2c, 2d), we use Gillespie’s algorithm (Gillespie 1977;
see app. A in the online edition of the American
Naturalist).

Analysis of Population Growth and Extinction Risk

We analyze expected population growth and extinction
probabilities using the theory of multitype branching pro-
cesses (Harris [1963] 2002; Athreya and Ney [1972] 2004).
Because this theory allows us to compute these quantities
exactly, they exhibit smooth dependence on the parameter
values despite the underlying stochasticity of the spatially
structured model.

For determining the expected population growth rate,
denotes the row vector of populationN p (N , … , N )1 n

abundances, and is the per capita emi-
n

me p m� mi ijjp1

gration rate from patch i. The expected dynamics are given
by

dN
p N(B � D � mE � mM),

dt

where B, D, and E are diagonal matrices with diagonal
entries , , and , respectively, and M denotes the matrixb d ei i i

whose entries are given by . The population is expectedmij

to grow asymptotically like , where l is the dominantlte
eigenvalue of . More precisely, the ex-B � D � mE � mM
pected metapopulation size …E(N (t) � � N (t)FN(0))1 n

grows like for sufficiently large t. Corresponding to thislte
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Figure 2: Invasions for populations dispersing diffusively on a one-dimensional environment. Inset in a shows how reproductive values vary along
40 patches in a more hostile environment (solid squares) with and a less hostile environment (open squares) with . For an invadingˆ ˆR p 0.42 R p 1.68
population of 20 individuals, the probabilities of invasion success in a more hostile environment (a) and a less hostile environment (b) are plotted
as a function of where the invaders are released and the mean dispersal rate m. c, d, A single realization of the spatial-temporal dynamics in the
more hostile environment (a) is plotted. In each simulation, there were initially 20 individuals in location 20. c, ; d, . Populationm p 3 m p 10
densities are plotted on a log10 scale, with warmer colors corresponding to higher densities.

expectation, if , then the population becomes extinctl ≤ 0
in finite time with probability 1 (i.e., invasion failure).
Alternatively, when , there is a positive probabilityl 1 0
of establishment success and a complementary probability
of extinction.

A method for computing the probabilities of extinction
and invasion success is presented in appendix A. To un-
derstand how local per capita birth rates and per capita

death rates contribute to invasion success, we examine how
particular changes in these demographic rates alter the
probability of extinction. These changes can be evaluated
using either sensitivities or elasticities. Sensitivities describe
the absolute changes in the extinction probability due to
absolute changes in demographic parameters, while elas-
ticities describe the relative changes. For example, if isqi

the probability of extinction when a single individual ar-
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rives in patch i, then the sensitivity of to isq b �q /�bi j i j

and the elasticity is . In appendix F, we pro-(�q /�b )(b /q )i j j i

vide explicit expressions for the sensitivities and elasticities
of the patch-specific extinction probabilities with respect
to the demographic parameters.

Analysis of Time Lags and Spatial Spread

To understand how spatial heterogeneities influence time
lags and rates of spatial spread, we ran 1,000 simulations
using Gillespie’s algorithm for six different scenarios cor-
responding to low, medium, and high dispersal rates
( , 1, 10) and two forms of propagule pressure (fivem p 0.1
individuals released in one site and one individual released
in each of five random sites). In these simulations, there
were 10 patches. Between-patch dispersal rates weremmij

chosen randomly from a uniform distribution on [0, 1]
and normalized to yield desired mean per capita emigra-
tion rates. Birth rates and death rates were chosen ran-
domly from uniform distributions on [0, 2.5] and [0.1,
2.1], respectively. Each simulation ran until the population
either reached 100 individuals or became extinct. For each
simulation, we computed the probability of extinction q,
the asymptotic growth rate l, the time to reaching 100
individuals (when this occurred), and the fraction of the
landscape covered when the population reached 100 in-
dividuals. Since extinction probabilities q and the asymp-
totic growth rate l were significantly correlated, we
performed a principal components analysis on the stan-
dardized extinction probabilities and growth rates . Thisˆq̂ l

analysis revealed that for all scenarios, the first principal
component (PC1) was given by . This prin-1/2 ˆˆ(1/2 )(q � l)
cipal component can be interpreted as a measure of the
hostility of the environment encountered by the invaders,
with positive values corresponding to invaders arriving in
a patch with high extinction risk or in a landscape in which
they have a low asymptotic growth rate. We conducted
linear regressions of the time lags and rates of spatial
spread against this principle component. Both time lags
and spatial spread rates were log transformed before re-
gression, in accordance with our expectation of exponen-
tial growth of populations that invade successfully.

Results

Effect of Mean Dispersal Rate on the
Asymptotic Growth Rate

Provided there is heterogeneity in the per capita growth
rates (i.e., there exist patches such that )b � d ( b � di i j j

and dispersal eventually connects all habitats (i.e., M �
is irreducible), the asymptotic growth rate l is a de-E

creasing function of the mean dispersal rate (fig. 1b; app.

B). The maximum asymptotic growth rate occurs for
dispersal-limited populations (i.e., ) and is given bym ≈ 0
the maximum of the per capita growth rates max (b �i i

. Whenever there is heterogeneity in the per capitad )i
growth rates, the maximal per capita growth rate is greater
than the spatial average of

n
E(b � d ) p (1/n) � b � di i i iip1

the per capita growth rates. Hence, for dispersal-limited
populations, spatial heterogeneity increases the asymptotic
growth rate.

The lowest asymptotic growth rate occurs for highly
dispersive populations and depends on the stable patch
distribution for the dispersal matrix M. This distribution
is given by the eigenvector satisfyingv p (v , … , v )1 n

and . One can interpret as the
nv(M � E) p 0 � v p 1 viip1

expected long-term spatial distribution of an ensemble of
individuals following the movement rules determined by
M. The asymptotic growth rate for highly dispersive pop-
ulations is given by the per capita growth rates averaged
with respect to this distribution:

n
l̂ p � v (b � d ) pi iiip1

. This expression highlights an intuitive ex-v # (b � d)
planation for l decreasing with m: higher dispersal rates
tend to average the per capita growth rates across patches,
progressively diluting the influence of the patch with the
maximum per capita growth rate.

The asymptotic growth rate for highly dispersive pop-
ulations can be rewritten as

l̂ p E(b � d ) � Cov (b � d , nv ), (1)i i i i i

where is the covariance between the perCov (b � d , nv )i i i

capita growth rates and the stable patch distribution. Equa-
tion (1) implies that positive correlations between move-
ment patterns and per capita growth rates tend to increase
the expected growth rate, while negative correlations tend
to decrease the expected growth rate. In contrast to
dispersal-limited populations, spatial heterogeneity en-
hances population growth only if there is a positive cor-
relation between movement patterns and per capita growth
rates.

Invasion Probabilities in Heterogeneous Environments

While the asymptotic growth rate varies in a consistent
manner with the mean dispersal rate, the extinction prob-
abilities are patch specific and, consequently, vary with the
mean dispersal rate in a more subtle manner. Although it
is not possible to write down a general solution for the
extinction probabilities as a function of m, explicit ex-qi

pressions can be determined for dispersal-limited popu-
lations and highly dispersive populations. For dispersal-
limited populations, the probability of extinction for a
population initiated with a single individual in patch i is
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given by , where is the repro-q p min (1, 1/R ) R p b /di i i i i

ductive number for an individual living in patch i (app.
C). represents the expected number of offspring pro-Ri

duced in that individual’s lifetime. Hence, the greater the
reproductive number for an individual in a patch, the
greater the likelihood of invasion success. When an invader
arrives in a sink habitat (i.e., ), invasion failure isR ! 1i

highly likely, with a mean time to extinction of approxi-
mately (app. D).�[ln (1 � R )]/bi i

At sufficiently high dispersal rates, the probability of
extinction is effectively patch independent, and the ex-
tinction probability for a population initiated with a single
individual is given by whereˆ ˆq̂ p min {1, 1/R} R p

is an appropriately spatially averaged re-
n n� v b / � v dj jj jjp1 jp1

productive number (app. C). When , the extinctionR̂ 1 1
probability is greater (respectively, lower) than the ex-q̂
tinction probability for a dispersal-limited population ini-
tiated in the patch supporting the highest (respectively,
lowest) reproductive number. Therefore, higher dispersal
rates facilitate invasions starting in lower-quality patches
and inhibit invasions starting in higher-quality patches.
Alternatively, when , extinction occurs with proba-R̂ ! 1
bility 1 no matter where an invader arrives, and the mean
time to extinction is approximately ˆ�[ln (1 � R)]/(v #

(app. D).b)
To illustrate some implications of these results, consider

a population that disperses diffusively in a one-dimen-
sional environmental gradient (fig. 2a, inset). For diffusive
movement, the stable patch distribution places equal
weight on all patches. Consequently, . IfR̂ p E(b )/E(d )i i

and for some patch, then there is a dispersalR̂ ! 1 R 1 1i

threshold. Populations with dispersal rates below this
threshold have a chance of invading, while populations
with dispersal rates above this threshold cannot invade
(fig. 2a, 2c, 2d). For populations initiated in patches with
lower reproductive numbers, the probability of invasion
success can be greatest at intermediate dispersal rates. If

is sufficiently 11 (fig. 2b), then invasion success increasesR̂
sharply with dispersal for attempts initiated in patches with
lower reproductive numbers and decreases marginally only
for attempts initiated in patches with the largest repro-
ductive numbers.

Effects of Correlations between Movement and
Local Demographic Rates

The reproductive number for highly dispersive popula-
tions, , can be written asR̂

E(b ) � Cov (b , nv )i i iR̂ p . (2)
E(d ) � Cov (d , nv )i i i

Hence, when movement patterns are positively correlated

with local reproductive rates or negatively correlated with
local mortality rates, highly dispersive populations have a
greater chance of invasion success. While diffusive patterns
of movement (i.e., for all i, j) are uncorrelatedm p mij ji

to local demographic rates, movement patterns are often
asymmetric because they are influenced by spatial struc-
ture of the landscape or other environmental cues (Colbert
et al. 2001). To examine how nondiffusive movement can
generate correlations, we consider landscapes with variable
patch connectivity and movements driven by patch
conditions.

Consider individuals that perform a random walk be-
tween patches in which individuals have a fixed emigration
rate and that, on leaving a patch, are equally likely to go
to any neighboring patch (Grimmett and Stirzaker 2001).
If patch i has neighbors, then the stable patch distri-ki

bution is given by . In other words,…v p k /(k � � k )i 1 ni

the fraction of time individuals spend on a given patch is
proportional to the number of neighboring patches (fig.
3a). Hence, if local demographic rates are higher in highly
connected patches than in sparsely connected patches, then
there can be a positive correlation between the stable patch
distribution and the local demographic rates. Conversely,
negative correlations arise when sparsely connected
patches have higher demographic rates. For instance, if
highly connected patches are sources and , then in-R̂ ! 1
termediate levels of dispersal can enhance the likelihood
of invasion success (fig. 3b). In contrast, if highly con-
nected patches are sinks and , then higher rates ofR̂ ! 1
dispersal always increase the risk of invasion failure.

Movement in response to environmental cues may re-
sult in adaptive or maladaptive behavior. Adaptive behav-
ior occurs when individuals can use environmental cues
to disperse to patches in which they have higher fitness
(Stephens and Krebs 1987). On the other hand, if envi-
ronmental cues in the new landscape differ significantly
from the native landscape, then maladaptive behavior may
arise. To understand the effects of maladaptive as well as
adaptive behavior, let us return to a simple one-dimen-
sional lattice of patches where individuals disperse to
neighboring patches. As an illustrative model, we assume
that the dispersal rate from patch i to patch j for Fi �

is proportional to , where a mea-jF p 1 exp [a(R � R )]j i

sures the responsiveness of the individuals to fitness dif-
ferences between patches. If , individuals tend to dis-a 1 0
perse adaptively by moving up the fitness gradient. If

, individuals exhibit maladaptive behavior by pref-a ! 0
erentially moving down the fitness gradient. If , in-a p 0
dividuals disperse diffusively between neighboring patches.
The stable patch distribution for these movement patterns
is given by
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Figure 3: Stable patch distribution and invasion probabilities for a population performing a random walk between patches. a, Random collection
of patches where connections are randomly determined by distances between patches. The size of each patch is proportional to its steady state patch
occupancy, . b, Inset shows a configuration of core and satellite patches. Invasion probabilities for a single individual arriving in a satellite patchvi

are plotted. Dashed line, probabilities when satellite patches are sinks and core patch is a source. Solid line, probabilities when satellite patches are
sources and core patch is a sink. Parameters are in all patches, in source patches, and in sink patches. For both scenarios,b p 1 d p 0.5 d p 1.5i i i

.R̂ p 0.75 ! 1

exp [2a(R � R )]i 1v p .i � exp [2a(R � R )]j 1j

When , the stable patch distribution places equala p 0
weight on all habitats ( for all i). When ,v p 1/n a 1 0 vi i

is greater for patches where individuals have larger repro-
ductive numbers. Hence, adaptive behavior promotes pos-
itive correlations between the stable patch distribution and
the patch-specific reproductive numbers and thereby en-
hances chances for invasion success. Conversely, mal-
adaptive dispersal behavior ( ) reduces chances fora ! 0
successful invasion.

For highly adaptive foragers ( ), the stable patcha k 0
distribution is concentrated on the patch with the greatest
reproductive number, in which case (fig. 4b).R̂ ≈ max Ri i

Thus, for highly adaptive foragers, establishment occurs
with positive probability at all dispersal rates, provided
there is a source patch (fig. 4c). Surprisingly, local fitness
peaks in the environment do not serve as “traps” when
individuals are highly responsive to local fitness differ-
ences. In contrast, for highly maladaptive populations
( ), the stable patch distribution is concentrated ona K 0
the patch with the lowest fitness (fig. 4b), in which case

. Consequently, highly maladaptive foragersR̂ ≈ min Ri i

cannot establish at high dispersal rates if there are sink
patches in the environment (fig. 4d).

Propagule Pressure and Invasion Success

Propagule pressure is the product of the number of in-
vasion events (propagule number) and the average number
of individuals arriving per invasion event (propagule size).
To see how different forms of propagule pressure affect
invasion success, we examine two scenarios: a single prop-
agule with k individuals (the single release scenario) versus
k propagules with one individual each (the multiple release
scenario). Appendix E shows whether there is spatial het-
erogeneity in the extinction likelihoods ( for someq ( qi j

i and j), then independent invasion attempts byk ≥ 2
single individuals are more likely to result in invasion suc-
cess than a single invasion attempt by k individuals arriving
in one patch.

Figure 5 illustrates this result for less hostile ( ) andR̂ 1 1
more hostile ( ) environments. For less hostile en-R̂ ! 1
vironments, the probability of invasion success increases
with the total number of individuals released and the mean
dispersal rate. For more hostile environments, invasion
success is most likely at intermediate dispersal rates. In
both environments, multiple releases exhibit a significantly
higher probability of invasion success at low dispersal rates
and higher propagule pressure. Higher dispersal rates tend
to homogenize the extinction probabilities and thereby
reduce the difference between invasion success in the
single-release and multiple-release scenarios.
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Figure 4: Adaptive foraging and population viability. Individuals move along a one-dimensional landscape where per capita birth rates vary to yield
reproductive numbers (a). Dispersal rates from patch i to j with are proportional to , where a measures the adaptivenessFi � jF p 1 exp [a(R � R )]j i

of movement. b, Renormalization of the stable patch distribution is plotted as a function of the patch location and a. c, d, Probability ofv / max vji j

invasion success for adaptive ( ) and maladaptive ( ) dispersal is plotted for populations of initially 20 individuals as a function of theira p 6 a p �2
mean dispersal rate m and the location where they were released.

Sensitivities and Elasticities

To understand how local per capita birth rates and per
capita death rates contribute to invasion success, appendix
F presents analytical expressions for the sensitivities and
elasticities of extinction probabilities to demographic pa-
rameters. To illustrate these results, we discuss how dis-
persal and spatial heterogeneity interact to determine the
influence of local birth rates on global invasion probabil-
ities. For dispersal-limited populations, the probability of
extinction in habitat i is . Therefore, the elasticityq p d /bi i i

of with respect to the per capita birth rate in habitat iqi

is �1. Hence, for dispersal-limited populations, the larger
elasticity values are concentrated around the diagonal of
the elasticity matrix (fig. 6a). In con-E p (�q /�b )(b /q )ij i j j i

trast, for highly dispersive populations, the extinction
probabilities are patch independent. The elasticityˆq ≈ 1/Ri

of this extinction probability to the per capita birth rate
in patch i is given by . Hence, at high dispersal�v b / � v bi ji jj

rates, the extinction probability is most sensitive to changes
of reproduction in patches where, on average, individuals
produce more progeny either because the local reproduc-
tive number is higher or because the patch has higher levels
of occupancy (fig. 6d). For example, for random walks on
a network of patches of similar quality, the extinction
probabilities are most sensitive to changes in the most
connected patches (i.e., patches with largest ). At inter-vi

mediate dispersal rates, particularly for invasions that be-
gin in patches close to higher-quality patches, extinction
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Figure 5: Invasion success with variable propagule pressure for populations living on a one-dimensional landscape with 40 patches. Reproductive
values are as in figure 2. a, c, Probability of invasion success for a single release of invaders is plotted as a function of propagule pressure and mean
dispersal rate. b, d, Probability of successful invasion for a multiple release minus the probability of success for a single release is plotted as a function
of propagule pressure and mean dispersal rate.

probabilities can be more sensitive to changes in demo-
graphic rates in the neighboring high-quality patches than
in the patch where introduction occurred (fig. 6c).

Time Lags and Spatial Spread

To understand how spatial heterogeneities influence time
lags and rates of spatial spread, we built on our earlier
analyses and examined how these quantities correlate with
the patch-specific extinction probabilities and the asymp-
totic growth rates. Table 1 reports the results of a log-
linear regression of time lags and rates of spatial spread
against the principal component PC1 (see “Model and
Methods”), which measures the “hostility” of the land-
scape. In all scenarios, the time lags were positively cor-
related with PC1 (fig. G1a in the online edition of the

American Naturalist). In other words, low asymptotic
growth rates or arriving in patches with higher extinction
risk results in longer time lags. Invasions that succeed
despite arriving in patches with high extinction risk may
experience longer time lags because populations arriving
in low-quality patches tend to “sputter” along until in-
dividuals ultimately disperse to higher-quality patches, at
which point the population growth is much more rapid.
Also, we showed previously that higher dispersal rates lead
to lower l. Given the positive correlation of time lags with
PC1, this result implies that higher dispersal rates should
lengthen time lags. This expectation is confirmed by our
simulations, since intercepts and slopes of the regression
lines increase with dispersal rates (table 1). Similarly, be-
cause multiple releases of small propagules (i.e., five in-
dividuals in five different patches) are less likely to lead
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Figure 6: Elasticities of extinction probabilities with respect to patch-specific per capita birth rates. Reproductive values are as in figure 2a for the
less hostile environment. Individuals move diffusively on a one-dimensional landscape. The color of each cell shows the absolute value of the elasticity
of the patch-specific extinction probabilities (i.e., for an introduction occurring on patch i) with respect to the patch-specific birth rates . Meanq bi j

dispersal rates are indicated.

to extinction than a single release of a large propagule (i.e.,
five individuals in a single patch), we would expect more
diffuse propagule pressure to result in shorter time lags,
and this expectation is confirmed by our simulations (i.e.,
intercepts and slopes for the regression lines are lower for
the multiple releases).

In contrast to time lags, the rates of spatial spread are
always negatively correlated with PC1 (fig. G1b). Lower
asymptotic growth rates or arriving in locations with
higher extinction risk (given that the invasion is successful)
results in slower spatial spread. Multiple releases of small
propagules tended to result in higher rates of spatial spread
than single large releases (table 1), as intuition and our

earlier results would predict. The effect of dispersal rates
on the rate of spatial spread is more complex, since dis-
persal has two competing effects on invasion dynamics:
higher dispersal rates facilitate faster spatial spread for pop-
ulations of similar size but also slow down population
growth, which can impede spatial spread.

Discussion

Effects of Spatial Heterogeneity and Dispersal
on Invasion Dynamics

To become invasive following an introduction, a species
must become established, increase in abundance, and
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Table 1: Time lags and spatial spread

m Intercept Slope 2R

One propagule of five individuals:
Logarithm of mean lag time:

.01 1.666 � .012 .330 � .011 .465
1 1.754 � .006 .370 � .005 .853
10 2.702 � .007 .572 � .006 .916

Logarithm of mean spread rate:
.01 �2.361 � .010 �.291 � .009 .495
1 �1.787 � .006 �.363 � .005 .851
10 �2.702 � .007 �.572 � .006 .916

Five propagules of one individual:
Logarithm of mean lag time:

.01 1.506 � .008 .293 � .007 .670
1 1.753 � .004 .364 � .003 .918
10 2.682 � .007 .567 � .006 .925

Logarithm of mean spread rate:
.01 �2.158 � .007 �.279 � .006 .680
1 �1.788 � .004 �.357 � .003 .916
10 �2.683 � .007 �.567 � .006 .925

Note: Using the simulated data described in “Model and Methods,” a linear regression was

performed on the logarithm of mean time lag (i.e., time to reach 100 individuals) and the

logarithm of mean rate of spatial spread (i.e., average change in fraction of landscape covered

per unit time) versus the principal component PC1 of the standardized values. m is theq � l

mean dispersal rate.

spread spatially. Spatial heterogeneity in environmental
conditions and movement patterns of the invader in this
heterogeneous landscape can influence each of these
phases of the invasion process as well as the time lags
between these phases. In the establishment phase, our
analysis shows that the mobility of the invader plays an
important role. For dispersal-limited invaders, the likeli-
hood of establishment failure is inversely proportional to
the local reproductive number of the invaded patch,Ri

namely, the mean number of offspring produced during
the lifetime of an individual in the invaded patch. The
importance of reproductive numbers in determining es-
tablishment success has been demonstrated in earlier the-
oretical work (McArthur and Wilson 1967; Anderson and
May 1991; Metz and Gyllenberg 2001), in field experi-
ments on the colonization of islands by mice and voles
(Crowell 1973; Ebenhard 1989), and in a meta-analysis of
invasion success for 36 species of exotic introduced birds
in New Zealand (Veltman et al. 1996). Since spatial het-
erogeneity can generate variation in local reproductive
numbers, invasion success for dispersal-limited popula-
tions can be highly contingent on where an organism ar-
rives. For example, Schoener and Spiller (1995) found that
colonization success of spiders was greater in islands with-
out lizard predators than with lizards. This is consistent
with the widespread finding that “habitat matching” is a
key determinant of invasion success (Duncan et al. 2003;
Hayes and Barry 2008).

The effect of dispersal rates on establishment success is
subtle and depends on an appropriately spatially averaged
reproductive number, . For populations with very rapidR̂
dispersal (i.e., dispersal events much more frequent than
demographic events), is a threshold parameter so thatR̂
invasion cannot succeed if . For populations withR̂ ! 1
intermediate dispersal rates, this threshold behavior is
weakened, but still provides crucial insight into howR̂
spatial heterogeneity influences invasion success. Because

lies between the extremes of the local reproductive num-R̂
bers, the effect of dispersal rates on establishment depends
on where an invader initially arrives. For invaders arriving
in patches with , dispersal tends to decrease theˆR 1 Ri

likelihood of invasion success, since individuals are likely
to move into patches associated with lower reproductive
numbers. For invaders arriving in patches with , theˆR ! Ri

effect of dispersal depends on the value of . If ,ˆ ˆR R 1 1
then higher dispersal rates always increase the likelihood
of invasion success. However, if , then the probabilityR̂ ! 1
of invasion success is greatest at intermediate dispersal
rates. These results suggest that dispersal can enhance the
chance for invasion success and thereby serve as a bet-
hedging strategy for invading organisms arriving in a novel
environment. These results also suggest the possibility that
invasions into heterogeneous environments may result in
selection for higher dispersal rates. Given the universality
of spatial heterogeneity in invaded landscapes, we believe
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that these hypotheses may provide fruitful avenues for
empirical study.

For more dispersive populations, our analysis also shows
that correlations between local reproductive numbers and
movement patterns influence the likelihood of establish-
ment. Positive correlations tend to increase this likelihood,
while negative correlations inhibit establishment. These
correlations can arise in a diversity of ways. For organisms
moving randomly on a network of patches, positive cor-
relations between patch connectivities and local repro-
ductive numbers enhance the likelihood of establishment,
since individuals are more likely to disperse to patches
with high connectivity (fig. 3). The importance of corre-
lations between local reproductive numbers and connec-
tivity was demonstrated by Jules et al. (2002) for the in-
vasion of a nonnative root pathogen Phytophthora lateralis
across a heterogeneous landscape populated with its host,
Port Orford cedar. Establishment success within a creek
(a “patch” for this system) was greater for creeks with
higher host densities (i.e., higher local reproductive num-
bers for the invading pathogen). Connectivity between
creeks was determined primarily by roads that serve as
routes for dispersal vectors (vehicles). Positive correlations
between host abundance and proximity to roads were
found to enhance establishment success, consistent with
our model prediction. Alternatively, correlations can arise
from organisms moving in response to environmental
cues. If these environmental cues are accurate indicators
of local reproductive numbers, then dispersal can greatly
enhance the probability of invasion success by moving
individuals from patches with lower reproductive numbers
to patches with higher reproductive numbers (fig. 4).
When the response to local differences in reproductive
numbers is sufficiently strong, highly dispersive individuals
(at least in one-dimensional environments) eventually
spend most of their time in the patch that maximizes their
establishment likelihood.

Following successful establishment, an invading popu-
lation will grow in abundance and spread across space.
Since the population growth rate can be calculated trivially
for a given patch, we focus on the growth rate for the
entire metapopulation that integrates characteristics of the
heterogeneous landscape and dispersal patterns. Extending
earlier theoretical work (Hastings 1983; Adler 1992; Dock-
ery et al. 1998), our analysis implies that spatial hetero-
geneity increases the expected growth rate of dispersal-
limited populations as a result of the influence of favorable
patches but that this effect is diluted progressively as dis-
persal rates increase. The invasion of a woody weed Mi-
mosa pigra into the wetlands of tropical Australia illustrates
this dilution. A relatively fast disperser, this weed had a
population doubling time of 1.2 years on favorable patches
but exhibited much slower growth at the regional scale

(doubling time of 6.7 years) as a result of separation of
suitable wetland habitats by eucalypt savannas that M.
pigra can colonize less readily (Lonsdale 1993). While the
earlier theoretical work considered only diffusive move-
ment, we find that negative correlations between move-
ment patterns and the patch-specific per capita growth
rates (as opposed to the patch-specific reproductive num-
bers) result in spatial heterogeneity lowering population
growth rates for highly dispersive populations, while pos-
itive correlations can mitigate the dilutionary effect of dis-
persal. These correlations may be particularly important
for spatial spread, since we found that invasions spread
more rapidly in landscapes supporting higher metapop-
ulation growth rates. This finding complements results
from the metapopulation literature (Day and Possingham
1995; Facon and David 2006). For example, using sto-
chastic patch occupancy models to analyze the spread of
the introduced snail Tarebia granifera on the island of Mar-
tinique, Facon and David (2006) found that heterogeneity
in patch sizes leads to positive correlations between im-
migration rates (larger patches attract more immigrants)
and colonization rates (larger patches send out more prop-
agules), and these positive correlations result in faster rates
of spatial spread.

A feature of many invasions is a time lag between es-
tablishment and the onset of rapid population growth (Sa-
kai et al. 2001; Crooks 2005; Facon et al. 2006). While
time lags are expected for invading populations exhibiting
exponential growth, stochasticity (Facon and David 2006)
or Allee effects (Taylor et al. 2004) can prolong these time
lags. Our analysis implies that spatial heterogeneity is an-
other potent source of prolonged time lags. In particular,
we found that time lags are longer for successful invasions
initiated in patches with high extinction risk or in land-
scapes supporting a lower metapopulation growth rate.
Consequently, longer time lags can occur when an in-
vader’s movement patterns are negatively correlated with
habitat quality, for example, when there is an initial mis-
match between environmental cues in the new environ-
ment and the invader’s native environment. Alternatively,
invaders arriving in low-quality patches may persist at low
levels for extended periods of time before successfully dis-
persing to higher-quality patches. Hence, spatial hetero-
geneity can amplify time lags due to demographic sto-
chasticity. These ecological time lags are analogous to the
time lags generated by evolutionary adaptation to a new
environment (Sakai et al. 2001; Crooks 2005; Facon et al.
2006). However, instead of waiting for the evolution of an
adapted genotype, there is the delay in finding a suitable
habitat.
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Propagule Pressure

Propagule pressure is a composite measure of the number
of individuals released into a novel environment (Lock-
wood et al. 2005). Propagule pressure has been shown to
be positively correlated with invasion success in many sys-
tems (Rejmanek and Richardson 1996; Cassey et al. 2004;
Holle and Simberloff 2005; Memmott et al. 2005; Sax et
al. 2005; Moyle and Marchetti 2006). Since propagule pres-
sure entails both the number of release events (propagule
number) and the number of individuals in a given release
event (propagule size), the same pressure can be realized
in a diversity of ways. If releases occur randomly across
the landscape, our analysis implies that several small re-
leases are more likely to result in invasion success than a
single large release. This prediction is consistent with meta-
analyses of introductions of exotic birds in New Zealand
(Veltman et al. 1996) and Australia (Duncan et al. 2003)
and exotic ungulates in New Zealand (Forsyth and Duncan
2001), all of which found that establishment success in-
creased with the number of releases. While this conclusion
follows mathematically from Muirhead’s inequality (app.
E), its intuitive underpinning is clear: several small releases
increase the likelihood of some individuals landing in
patches with a higher reproductive number and thereby
increase the chance of invasion success. The argument
presented here for spatially heterogeneous environments
extends to other forms of heterogeneity. For instance, it
can be used to generalize earlier findings that in a tem-
porally heterogeneous environment a sequence of n re-
leases of a single individual is more likely to lead to in-
vasion success than releasing n individuals at once (e.g.,
Haccou and Iwasa 1996). In addition to having a positive
impact on establishment success, we found that multiple
small releases distributed across space result in shorter time
lags and, quite intuitively, enhance rates of spatial spread.

Extensions and Challenges

While not addressed specifically by this analysis, it is in-
teresting to speculate how our results relate to recent work
on genetic and evolutionary aspects of invasibility (Facon
et al. 2006). Fundamentally, our work is focused on the
importance of habitat matching, that is, of invading in-
dividuals finding environments where their fitness is rel-
atively high. By studying the influence of dispersal rates
on invasion success, our analysis incorporates the possi-
bility that individuals may change their fitness by moving
to better (or worse) environments. There is a direct anal-
ogy to genetically heterogeneous invaders in a constant
environment, where the matching pertains to having the
right genotype for the given environment, and the pos-
sibility of changing fitness arises through evolution rather

than movement. Our predictions for spatial heterogeneity
can then be generalized to the genetic context. For in-
stance, if there is genetic variation in the invading species,
then releasing small numbers of many genotypes is more
likely to lead to invasion success than releasing large num-
bers of a few genotypes. Indeed, this prediction is sup-
ported by experimental work by Ahlroth et al. (2003), who
translocated mated female water striders into streams and
found that colonization success was highest for propagules
that originated from two different, genetically distinct
source populations. Kolbe et al. (2004) studied invasive
Anolis lizards in various locations worldwide and argued
that occurrence of multiple introductions from genetically
distinct source populations was a key driver of invasion
success. They also identified two instances where the ex-
tended lag phases before expansion of the invasive pop-
ulations were best explained by the late arrival of better-
adapted genotypes in separate introduction events. Facon
et al. (2008) went further in a study of the invasive snail
Melanoides tuberculata in Martinique, demonstrating sur-
prisingly high adaptive potential in these recently estab-
lished populations by linking genetic variation to phe-
notypic variation in five key life-history traits. Taking
advantage of the mixed sexual/asexual reproductive strat-
egy of the organism, they partitioned the causes of phe-
notypic variance between multiple introductions (the ma-
jor component) and subsequent creation of novel variants
by interbreeding. This natural system thus exhibits the
interplay between fitness of the founding propagules and
subsequent changes to that fitness, that is, just what we
have analyzed in the current study but with populations
structured by genotype rather than space. In future work,
we will modify our framework to explicitly consider
the problem of evolutionary adaptation of invading
populations.

Our model assumes independence among individuals
in their reproduction and survival, and it is important to
note that density dependence could lead to different out-
comes. The existence of an Allee effect certainly could alter
the conclusions regarding propagule pressure. A series of
modeling studies in the biocontrol literature have shown
that larger release sizes have a better chance of establishing
in the presence of a strong Allee effect (Hopper and Roush
1993; Grevstad 1999; Shea and Possingham 2000; Jonsen
et al. 2007). Grevstad (1999) further explored how Allee
effects interact with temporal variability in the environ-
ment and found that small, intermediate, or large release
sizes could be optimal, depending on the relative strength
of the two effects. Empirical analyses of insect introduc-
tions have found that larger releases have higher estab-
lishment probabilities, but this effect did not carry over
to influence population growth in subsequent years (Hop-
per and Roush 1993; Memmott et al. 2005). Negative den-
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sity dependence can also arise during invasions, for in-
stance, owing to resource competition among the invaders
if patches are sufficiently small. This issue has received
particular attention for disease outbreaks, where local de-
pletion of the susceptible population can cause extinction
if mixing rates among groups (or replenishment of the
susceptible pool) are not rapid enough (Cross et al. 2005;
Cross et al. 2007). Human efforts to control undesirable
invasions—and, indeed, any predator responses—may also
increase with invader density. In contrast to Allee effects,
any such negative density dependence will further increase
the benefit of many small releases.

Our analysis and modeling framework allow for arbi-
trary complexity in spatial heterogeneity in demographic
(or epidemiological) rates and patch connectivity, but we
have illustrated our results for landscapes with relatively
simple spatial structures. We expect that our qualitative
conclusions will be robust to differences in spatial struc-
ture, but figure 3 demonstrates that spatial heterogeneity
may interact with complex movement patterns in non-
trivial ways. We leave these interactions as a topic for future
study and refer the reader to the comparatively well-
developed literature on the effects of complex metapop-
ulation structure on invasion dynamics (e.g., Watts et al.
2005; Colizza and Vespignani 2007; Vazquez 2007).

Implications for Conservation and Control

Our sensitivity and elasticity analyses yield insights for
effective control of invasions in heterogeneous landscapes,
including the nonintuitive result that it is often more ef-
fective to focus control efforts on high-quality patches even
when the invasion begins elsewhere. In contrast, for slow-
dispersing invaders, efforts should be focused on surveil-
lance for rapid detection and response at the site of in-
troduction. In the invasive species context, measures to
reduce birth rate include contraception or releasing egg
predators, and measures to increase death rate include
culling or trapping. In the disease context, reductions in
birth rate correspond to transmission-reducing interven-
tions (such as vaccination, hand washing, or social dis-
tancing), while increased “death rate” of infectious indi-
viduals corresponds to treatment, case finding and
isolation, or culling. Our findings echo the classic “cities
and villages” result of Anderson and May (1991), who
show that the optimal vaccination pattern to achieve de-
terministic eradication of an endemic disease will focus
greater effort on larger cities, where transmission is as-
sumed to be more intense. Our results also provide a the-
oretical underpinning for earlier findings on outbreak con-
trol derived from simulation models, such as analyses of
spatial vaccination strategies for rabies or foot-and-mouth
disease, which take account of patch-specific values of

and dispersal patterns across the landscape (Keeling etR 0

al. 2003; Haydon et al. 2006; Real and Biek 2007).
Since degradation of patches with high connectivity de-

creases the correlation between connectivity and habitat
quality more than degradation of patches with low con-
nectivity, our results reinforce the importance of protecting
or restoring highly connected patches to reduce extinction
risk or increase reestablishment success of a valued species
(Wahlberg et al. 1996; Lipcius et al. 2008). More generally,
understanding correlations between species movement
patterns and habitat quality and how these correlations
might change in the face of climate change is likely to play
an important role in conservation.

Our results show that while spatial heterogeneity can
increase the likelihood of establishment of invasive species,
it can also increase the time lags before new invaders are
detected or exhibit exponential growth. Paradoxically,
these periods of low detectability can provide significant
windows of opportunity for control, but seizing these op-
portunities will require the deployment of early detection
and rapid response systems (Crooks 2005). These time lags
also emphasize the need for a precautionary principle:
consistent behavior of an invasive species in one part of
the landscape may be a poor predictor of what will happen
if the species reaches another part of the landscape.

In conclusion, while we have mostly focused on ide-
alized scenarios to reach broad conceptual conclusions,
our spatially explicit stochastic framework and analytical
results can be easily adapted to specific situations (i.e.,
specific landscapes or forms of demographic heterogene-
ity) in order to understand their invasive dynamics and
to evaluate and guide control measures.
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Appendix A from S. J. Schreiber and J. O. Lloyd-Smith, “Invasion
Dynamics in Spatially Heterogeneous Environments”
(Am. Nat., vol. 174, no. 4, p. 490)

Computational Considerations
To simulate the branching processes, we used Gillespie’s algorithm. Namely, given the current population state

, the time to the next demographic event is exponentially distributed with rate parameter(N (t), … , N (t)) r(t) p1 n

. When the demographic event occurs, the probabilities that this event is a
n� (b � d )N (t) � m� m N (t)i i i ij iip1 i(j

birth in patch i, a death in patch i, or a dispersal event from patch i to patch j are given by ,b N (t)/r(t)i i

, and , respectively.d N (t)/r(t) mm N (t)/r(t)i i ij i

Extinction probabilities were computed using the generating function for the branching process (Harris [1963]
2002; Athreya and Ney [1972] 2004). The generating function is a multivariate function—G(s) p

, where —that captures all the probabilistic information about changes in the(G (s), … , G (s)) s p (s , … , s )1 n 1 k

population state. For our spatial branching process, this generating function is given by

n1 2G (s) p d � b s � m m s ,�i i i i ij j( )b � d � me jp1i i i

where the coefficients of 1, , and correspond to the probabilities that a demographic event of an individual in2s si j

patch i corresponds to dying, giving birth, and dispersing to patch j.
The probability of extinction depends on the initial abundance and distribution of individuals on the landscape.

Let denote the extinction probability if there is initially one individual arriving in patch i. If , then theq l 1 0i

extinction probabilities are given by the unique solution to satisfying forq p (q , … , q ) G(q) p q 0 ≤ q ! 11 n i

all i. From these extinction probabilities, it is possible to compute the probability of extinction (and the
complementary probability of invasion success) for any initial distribution and abundance of individuals. Namely,
if is the initial number of individuals in patch i, then the probability that the invasion fails is given byN (0)i

N (0)iq .� i
i

Numerically estimating the probabilities is straightforward: iterate the difference equationq s(t � 1) p G(s(t))i

with until it converges to q.s(0) p (0, … , 0)
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Appendix B from S. J. Schreiber and J. O. Lloyd-Smith, “Invasion
Dynamics in Spatially Heterogeneous Environments”
(Am. Nat., vol. 174, no. 4, p. 490)

Asymptotic Population Growth Rate
The solution for any linear differential equation is given by where denotes thedN/dt p NA N(0) exp (At) exp (7)
matrix exponential. A and share the same eigenvectors. Moreover, the eigenvalues of are theexp (A) exp (A)
exponentiated eigenvalues of A. If, as in our case, A has nonnegative entries on the off diagonal, then the
exponentiated matrix is a nonnegative primitive matrix. By the Perron-Frobenius theorem, there exists aexp (A)
positive dominant eigenvalue. Call it and let be the corresponding dominant eigenvalue ofr(A) l(A) p ln r(A)
A. For the model presented in the main text, the expected asymptotic growth rate is given by

f (m) p l[B � D � m(M � E)].

To show that this asymptotic growth rate decreases with the mean dispersal rate, it will be shown that .′f (m) ! 0
Given any , choose such that , where I is the identity matrix. Definem p x 1 0 a 1 0 axI ≥ D � xE n # n

1
L p (B � D) � aI,

x

g(t) p l[L � t(M � E)].

Our choice of a and our assumption that M is irreducible imply that is a nonnegative irreducibleM � E � L

matrix. Moreover, since the row sums of are 0, the row sums of equal the diagonal entriesM � E M � E � L

of l. The following Lemma of Kirkland et al. (2006) applied to L � t(M � E) p (1 � t)L � t(M � E � L)
implies that .′g (1) ! 0

Lemma 1

Suppose that A is an irreducible nonnegative matrix, and let be the diagonal matrix of row sums of A. LetD LA

be a diagonal matrix such that . For , let . Then .′L ≥ D 0 ≤ t ≤ 1 h(t) p l[(1 � t)L � tA] h (1) ! 0A

Since

l[xL � tx(M � E)]
g(t) p

x

l[B � D � axI � tx(M � E)]
p

x

l[B � D � tx(M � E)]
p � a

x

f (xt)
p � a,

x

it follows that . Since was arbitrary, is a decreasing function of as claimed.′ ′g (1) p f (x) ! 0 x 1 0 f (m) m 1 0
To identify the asymptotic growth rate at high dispersal rates ( ), define , ,lim f (m) C p B � D F p M � Emr�

and
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2

g(e) p l(eC � F).

Let be the right eigenvector of F such that , with . For every , let be the dominantv Fv p 0 � v p 1 e ≥ 0 w(e)i

left eigenvector of such that (note that w is a row vector and is a column vector). It followseC � F w(e)v p 1 v
that

g(e) p w(e)(eC � F)v p ew(e)Cv.

Since , it follows thatw(e) p (1, … , 1) � O(e)

g(e) p e(b � d) # v � eO(e),

g(e) � g(0)′g (0) p lim
eer0

p lim (b � d) # v � O(e)
er0

p (b � d) # v.

It follows that

1
lim f (m) p lim g m( )mmr� mr�

g(e)
p lim

eer0

p v # (b � d),

as claimed.
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Appendix C from S. J. Schreiber and J. O. Lloyd-Smith, “Invasion
Dynamics in Spatially Heterogeneous Environments”
(Am. Nat., vol. 174, no. 4, p. 490)

Extinction Probabilities
Define and . The backward Kolmogorov equations (see,x (t) p P(N(t) p 0FN(0) p e ) x(t) p (x (t), … , x (t))i i 1 n

e.g., chap. V of Athreya and Ney [1972] 2004) for the extinction probabilities are given by

dxi p (b � d � me )(G (x) � x )i i i i idt

n

2p d � b x � m m x � (b � d � me )x .�i i i ij j i i i i
jp1

Hence,

ndxi p (1 � x )(d � b x ) � m m x � e x . (C1)�i i i i ij j i i( )dt jp1

Let be the smallest equilibrium to the backward equations. Branching process theory∗ ∗ ∗ nx p (x , … , x ) � [0, 1]1 n

(see, e.g., chap. V of Athreya and Ney [1972] 2004) implies that equals the vector of extinction probabilities∗x
q. Moreover, is a stable equilibrium for the backward equations whose basin of attraction includes .∗ nx [0, 1)

To understand low dispersal rates, consider the limit of , in which case the dynamics of equation (C1)m p 0
decouple. Separating variables and using partial fractions, the solution for with can be found to bex x (0)i i

1 � exp [(b � d )t]i ix (t) p . (C2)i 1 � R exp [(b � d )t]i i i

In particular, the probability of extinction is given by

1∗lim x (t) p x p min 1, .i i { }Rtr� i

By continuity of these extinction probabilities with respect to m, these analytic expressions provide zeroth order
approximations to extinction probabilities when .m 1 0

To understand the case of high dispersal rates, let be a row vector such that and .
nv v(M � E) p 0 � v p 1iip1

Define and . Then
n

y p � v x p v # x e p 1/miiip1

ndxi
e p e(1 � x )(d � b x ) � m x � e x�i i i i ij j i idt jp1

, (C3)ndy{ p v (1 � x )(d � b x )� i i i iidt ip1

and the limit corresponds to the limit , in which case we obtain a singular perturbation problem withm r � e r 0
fast variable x and the slow variable y. In the limit with , we havee p 0
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0 p e m x � e x ,� ij j i i
j

dy
p v(1 � x )(d � b x ).� i i i idt i

The first set of equations requires that . Since has zero row sums, for some(M � E)x p 0 M � E x(t) p c(t)1
function and where 1 is a column vector of ones. Since , it follows

n n
c(t) y(t) p � v x (t) p c(t)� v p c(t)ii iip1 ip1

that . Hence, the limiting dynamics on the slow manifold are given byx(t) p y(t)1

dy
p v (1 � y)(d � b y) p (1 � y)(v # d � v # by). (C4)� i iidt i

The solution of this differential equation is given by

1 � exp [v # (b � d)t]
y(t) p . (C5)ˆ1 � R exp [v # (b � d)t]

Moreover, the smallest equilibrium solution in is given by for all i if .[0, 1] x p y p 1 v # d ≥ v # bi

Otherwise, it is given by

1
y p x p ,i R̂

as claimed in the main text.
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Appendix D from S. J. Schreiber and J. O. Lloyd-Smith, “Invasion
Dynamics in Spatially Heterogeneous Environments”
(Am. Nat., vol. 174, no. 4, p. 490)

Mean Times to Extinction
Assume . Then the branching process becomes extinct with probability 1. As in appendix C, letl ! 0 x (t) pi

and . Let denote the time to extinction, given that .P(N(t) p 0FN(0) p e ) x(t) p (x (t), … , x (t)) Z N(0) p ei 1 n i i

In other words, . Then . A standard result in probabilityZ p inf {t ≥ 0FN(t) p 0} 1 � x (t) p P(Z 1 tFN(0) p e )i i i i

implies that

�

E(Z ) p 1 � x (s)ds.i � i

0

Let . Then andtz (t) p 1 � x (s)ds E(Z ) p lim z (t)∫0i i i tr� i

dzi p 1 � x . (D1)idt

Hence, the extinction times can be solved for by solving the system of differential equations given by equations
(C1) and (D1).

For the case of , equation (C2) implies thatm p 0

�

E(Z ) p 1 � x (t)dti � i

0

�

(1 � R ) exp [(b � d )t]i i ip dt� 1 � R exp [(b � d )t]i i i
0

1

R � 1 duip , with u p 1 � R exp [(b � d )t],� i i iR (b � d ) ui i i
1�Ri

ln (1 � R )ip � .
bi

Moreover, continuity of with respect to m implies that these mean extinction times are zeroth orderE(Z )i

approximations of when m is positive but sufficiently small.E(Z )i

To understand the case (i.e., high dispersal rates relative to growth rates), the singular perturbationm k 1
argument used in appendix C implies that in the limit , , where is given by equation (C5).m r � x (t) p y(t) y(t)i

Hence,
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�

ˆln (1 � R)
E(Z ) p 1 � y(t)dt p � .i � v # b

0
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Appendix E from S. J. Schreiber and J. O. Lloyd-Smith, “Invasion
Dynamics in Spatially Heterogeneous Environments”
(Am. Nat., vol. 174, no. 4, p. 490)

Single versus Multiple Releases
Assume that . This appendix shows that k propagules of size 1 have a greater likelihood of invasion successk ≥ 2
than one propagule of size k. Let be the probability of invasion failure if a single invader appears in patch i.qi

For a single release, the probability of invasion failure is given by

n1k kE(q ) p q . (E1)�i in ip1

To model a multiple release, let be independent random variables that are uniformly distributed onX , … , X1 k

. One can interpret as the release location of the ith propagule. The probability of invasion failure of1, … , n Xi

the multiple release is given by

E(q … q ). (E2)X X1 k

For patch i, let

N p #{jFX p i}i j

be the number of releases in patch i. For nonnegative integers such that ,
k

a ≥ a … ≥ a � a p k1 2 n iip1

1 a a1 nE[q … q F(N , … , N ) p (a , … , a ) for a permutation j] p q … q .�X X 1 n j(1) j(n) j(1) j(n)1 k n! j

Since for and , Muirhead’s inequality implies that… …a � � a ≤ k 1 ≤ i ≤ n � 1 a � � a p k1 i 1 n

1 1a a k1 nq … q ≤ q� �j(1) j(n) j(1)n! n!j j

n(n � 1)! kp q� in! ip1

kp E(q ),i

where the inequality is strict whenever and for some , . Summing over all thea ! k q ( q 1 ≤ i j ≤ n1 i j

conditional expectations yields

kE(q ) ≥ E(q … q ),i X X1 k

where the inequality is strict whenever for some , .q ( q 1 ≤ i j ≤ ni j
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Appendix F from S. J. Schreiber and J. O. Lloyd-Smith, “Invasion
Dynamics in Spatially Heterogeneous Environments”
(Am. Nat., vol. 174, no. 4, p. 490)

Sensitivity Analysis
To compute sensitivities of the extinction probabilities when the asymptotic growth rate is positive, recall that
these probabilities are given by the smallest solution to

2(b � d � me )q p d � b q � m m q . (F1)�i i i i i i i ik k
k

Implicitly differentiating equation (F1) with respect to yieldsbi

�q �q �qi i k2q � a p q � 2b q � m m ,�i i i i i ik
�b �b �bki i i

where . Implicitly differentiating equation (F1) with respect to with yieldsa p b � d � me b j ( ii i i i j

�q �q �qi i ka p 2b q � m m .�i i i ik
�b �b �bkj j j

Thus, in matrix notation, we obtain

�q �q �q
diag(q) � diag(a) p diag(q y q) � 2diag(b y q) � mM ,

�b �b �b

where is the derivative matrix whose ith–jth entry is , denotes a Hadamard product, and�q/�b �q /�b y diag(v)i j

denotes a diagonal matrix whose diagonal entries are given by the entries of the vector . Equivalently, we havev

�q
diag[q y (1 � q)] p [diag(2b y q � a) � mM] .

�b

Hence,

�q
�1p [diag(2b y q � a) � mM] diag[q y (1 � q)].

�b

Using the matrix of sensitivities, the elasticities can be computed as

�q
�1E p diag(q) diag(b),b

�b

where the ith–jth entry of is .E (�q /�b )(b /q )b i j j i

On the other hand, implicitly differentiating equation (F1) with respect to yieldsdi

�q �q �qi i kq � a p 1 � 2b q � m m ,�i i i i ik
�d �d �dki i i
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where . Implicitly differentiating equation (F1) with respect to with yieldsa p b � d � me d j ( ii i i i j

�q �q �qi i ka p 2b q � m m .�i i i ik
�d �d �dkj j j

Thus, in matrix notation, we obtain

�q �q �q
diag(q) � diag(a) p I � 2diag(b y q) � mM ,

�d �d �d

where is the derivative matrix whose ith–jth entry is . Equivalently, we have�q/�d �q /�di j

�q
diag(q � 1) p [diag(2b y q � a) � mM] .

�d

Hence,

�q
�1p [diag(2b y q � a) � mM] diag(q � 1).

�d

Using the matrix of sensitivities, the elasticities can be computed as

�q
�1E p diag(q) diag(d),d

�d

where the ith–jth entry of is .E (�q /�d )(d /q )d i j j i
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Appendix G from S. J. Schreiber and J. O. Lloyd-Smith, “Invasion
Dynamics in Spatially Heterogeneous Environments”
(Am. Nat., vol. 174, no. 4, p. 490)

Correlations between Time Lags/Spatial Spread with PC1

Figure G1: Using the simulated data described in “Model and Methods,” a linear regression was performed on
the logarithm of mean time lag (i.e., time to reach 100 individuals; a) and the logarithm of mean rate of spatial
spread (i.e., average change in fraction of landscape covered per unit time; b) versus the principal component
PC1 of the standardized values. Positive values of PC1 correspond to populations arriving in patches withq � l

high extinction risk or landscapes supporting a low metapopulation growth rate l.


