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Understanding under what conditions populations, whether they be plants, animals or
viral particles, persist is an issue of theoretical and practical importance in population
biology. Both biotic interactions and environmental fluctuations are key factors that
can facilitate or disrupt persistence. One approach to examining the interplay between
these deterministic and stochastic forces is the construction and analysis of stochastic
difference equations Xtþ1 ¼ FðXt; jtþ1Þ, where Xt [ Rk represents the state of the
populations and j1; j2; . . . is a sequence of random variables representing
environmental stochasticity. In the analysis of these stochastic models, many
theoretical population biologists are interested in whether the models are bounded and
persistent. Here, boundedness asserts that asymptotically Xt tends to remain in compact
sets. In contrast, persistence requires that Xt tends to be ‘repelled’ by some ‘extinction
set’ S0 , Rk. Here, results on both of these proprieties are reviewed for single species,
multiple species and structured population models. The results are illustrated with
applications to stochastic versions of the Hassell and Ricker single species models,
Ricker, Beverton–Holt, lottery models of competition, and lottery models of rock–
paper–scissor games. A variety of conjectures and suggestions for future research are
presented.

Keywords: applications of Markov chains and discrete-time Markov processes on
general state spaces; population dynamics (general); stochastic difference equations

1. Introduction

One of the most fundamental equations in population biology is ‘what are the necessary

conditions to ensure the long-term persistence of a population or a collection of interacting

populations?’ A fruitful approach to addressing this question has been the development

and analysis of mathematical models. For deterministic models, such as difference or

differential equations, any reasonable definition of persistence requires the existence of an

attractor bounded away from extinction of one or more of the populations [60]. When this

attractor is a global attractor (i.e. its basin includes all non-extinction states), the system is

uniformly persistent or permanent [14,42,63]. Permanence ensures that populations

recover from infrequent large perturbations often experienced by biological systems

[48,60]. Since its introduction, methods for verifying permanence have been developed

extensively for deterministic models accounting for nonlinear species interactions,

stage-structure within populations and spatial heterogeneity (see, e.g. the books of

Refs [15,43,65,75]).
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Temporal fluctuations in environmental conditions also play a crucial role in

determining persistence. One approach to understanding the influence of these temporal

fluctuations is the study of uniform persistence for non-autonomous difference or

differential equations [53,65,66]. The strength of this approach is that it allows for

relatively arbitrary forms of temporal fluctuations including periodic, quasi-periodic and

stochastic motions. However, the definition of persistence in these studies often requires

that the population trajectories remain uniformly bounded away from the extinction state.

For many stochastic models where the vagaries of the environment are encapsulated in

randomly varying parameters, this requirement is too strong [10,20,23,30,33,49,50,71].

For these models, population trajectories often drift arbitrarily close to the extinction set.

However, under certain conditions, there may be a probabilistic tendency to stay away

from this extinction set [17,18].

Here, I provide a partial review of the latter approach to persistence in fluctuating

environments. The main class of stochastic difference equations under consideration is

introduced in Section 2. Definitions of boundedness and persistence are given for

stochastic difference equations. For the former, a rather general theorem is presented. For

the latter, results are more dependent on model structure. Consequently, Sections 3–5

discuss results for scalar models, multispecies models and structured single species

models, respectively. Section 6 concludes with parting comments and suggestions for

future research.

2. Background

To study population dynamics in a random environment, consider stochastic difference

equations of the form

Xtþ1 ¼ FðXt; jtþ1Þ; ð1Þ

where Xt [ S represents the ‘state’ of the population at time t (e.g. a vector of densities or

frequencies) and jt is a random variable that determines the ‘environmental conditions’ at

time t. Throughout this article, I make the following standing assumptions.

A1: {jt}
1
t¼0 is a sequence of i.i.d random variables taking values in a separable metric

space V (such as Rn).

A2: F : S £V! S is a continuous function where S is a closed subset of Rk.

A3: There is a closed subset S0 , S such that S0 and SnS0 are invariant, i.e. Fðx;vÞ [
S0 if and only if x [ S0 and Fðx;vÞ [ SnS0 if and only if x [ SnS0:

Assumptions A1 and A2 imply that {Xt}
1
t¼0 is a Markov chain on S and that {Xt}

1
t¼0 is

Feller, meaning x 7! E½hðX1ÞjX0 ¼ x� is bounded and continuous whenever h : S! R
is bounded and continuous. For many of the results presented here, S is either the

non-negative orthant Rk
þ of Rk in which case x [ S is a vector of population densities

or S is the probability simplex D ¼ x [ Rk
þ :
P

ixi ¼ 1
� �

in which case x [ S is a vector

of population frequencies. S0 in assumption A3 is interpreted as the ‘extinction set’

where one or more populations have gone extinct. The invariance of S0 implies that

once the population has gone extinct it remains extinct, i.e. the ‘no cats, no kittens’

principle in population biology. Alternatively, the invariance of SnS0 implies that

populations cannot go extinct in one time step but only asymptotically, an assumption

met by most of the models in the population models in the literature. In particular, these

models do not account for demographic stochasticity which stems from the finiteness of

populations.
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It is natural to study the asymptotic behaviour of (1) from two perspectives. First, one

might ask ‘what is the probability the populations are in a particular configuration far into

the future?’More precisely, given a Borel set B , S, what can we say aboutP½Xt [ B� (i.e.

the probability Xt [ B) for large t? Since these probabilities correspond to the frequency of

observing a particular event across many realizations of the stochastic process, answering

this question provides an ‘ensemble view’ of the long-term dynamics. An alternative

perspective corresponds to asking ‘how frequently does the typical population trajectory

visit a particular configuration far into the future?’ To answer this question, it is useful to

introduce the empirical measures for the Markov chain Xt given by

Pt ¼
1

t

Xt21

s¼0

dXs
;

where dx denotes a Dirac measure at the point x, i.e. dxðAÞ ¼ 1 if x [ A and 0 otherwise. For

any Borel set A , S, PtðAÞ is the fraction of time that Xs spends in A for 0 # s # t2 1.

Provided the limit exists, the long-term frequency that X enters A is given by limt!1PtðAÞ.

Understanding this asymptotic behaviour with probability 1 corresponds to the ‘typical

trajectory’ perspective.

This review focuses on two aspects of the asymptotic behaviour: boundedness in

which the populations tend to stay bounded and persistence in which the populations tend

to stay away from the extinction set S0. Both aspects are viewed from the ‘ensemble’ and

‘typical trajectory’ perspectives.

2.1 Boundedness

When studying models of population dynamics, the first question that comes to mind is

‘are the long-term population abundances bounded?’ After all, we live in a finite world so

population numbers cannot become arbitrary large for indefinitely long periods of time.

For deterministic models, an appropriate notion of boundedness is dissipativeness: the

existence of a compact set C , S such that all solutions of (1) eventually enter and remain

in C for all future time. While trivially met when S is compact, this notion of boundedness

is, in general, too strong for stochastic models with non-compact S. For example,

theoretical population biologists often use models of the form Xtþ1 ¼ jtþ1Xtf ðXtÞ, where f

is a positive function representing the survivorship and jt is a log-normally distributed

random variable representing the mean number of offspring produced by an individual at

time t. Since log-normal random variables are absolutely continuous on ð0;1Þ, Xt can

become arbitrarily large with positive probability at any time step. While one might argue

that this behaviour is biologically unrealistic, models of this variety have provided many

important biological insights and therefore deserve a careful mathematical treatment.

One less restrictive notion of boundedness is that the probability Xt gets arbitrarily

large becomes vanishingly small [52].

Definition 1. The Markov chain (1) is bounded in probability if for all 1 . 0 there exists

a compact set C , S such that

lim inf
t!1

P Xt [ CjX0 ¼ x
� �

$ 12 1; ð2Þ

for all x [ S.
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This definition of boundedness implies that across many realizations of the dynamics

of (1), there is a small probability that populations lie outside a compact set far in the long

term. The standard definition of bounded in probability allows for the compact sets C to

depend on x as well as 1. However, for most applications, it is more natural to require this

stronger definition which ensures tendency for remaining bounded is independent of initial

conditions.

Alternatively, the empirical measure point of view insists that the fraction of time the

populations spend at arbitrarily high densities becomes vanishingly small.

Definition 2. The Markov chain (1) is almost surely bounded on average if for all 1 . 0

there exists a compact set C , S such that

lim inf
t!1

Pt½C� $ 12 1; almost surely ð3Þ

whenever X0 ¼ x [ S.

The average in this definition refers to the temporal average in the definition of the

empirical measures Pt. This terminology follows from a weaker notion of boundedness

used in the Markov chain literature [53].

Definition 3. The Markov chain (1) is bounded in probability on average if for 1 . 0

there exists a compact set C , S such that

lim inf
t!1

1

t

Xt21

i¼0

P½Xi [ CjX0 ¼ x� $ 12 1; ð4Þ

for all x [ S.

Both boundedness in probability and almost surely bounded on average imply

bounded in probability on average. However, boundedness in probability need not imply

almost sure boundedness on average, and vice versa. Since we cannot expect, in general as

discussed earlier, that Xt asymptotically remains in a compact set with probability 1, I will

refer to almost surely bounded on average as simply almost surely bounded.

As in the case of deterministic models, a practical method for verifying both forms of

boundedness is finding an appropriate Lyapunov-type function. Recall that a function

V : S! Rþ is called proper if limkxk!1VðxÞ ¼ þ1. The following theorem shows that

boundedness follows if there is a proper function V decreasing, on average, along

population trajectories whenever population densities are high.

Theorem 2.1. Let V : S! Rþ be a continuous, proper function. If there exist Borel

functions a;b : V! Rþ such that

V Fðx;vÞ
� �

# aðvÞVðxÞ þ bðvÞ for allv; x; ð5Þ

E½logaðjtÞ� , 0, E½logþaðjtÞ� , 1 and E½logþbðjtÞ� , 1 where logþðzÞ ¼ max

{logðzÞ; 0}, then (1) is bounded in probability and almost surely bounded.

Remark 1. An alternative proof, to the one given below, for the case of almost sure

boundedness was given by Benaı̈m and Schreiber [6] (Proposition 4).
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Proof. Define

Yt ¼ VðXtÞ; at ¼ aðjtÞ and bt ¼ bðjtÞ:

Define Zt iteratively by Z0 ¼ Y0 and

Ztþ1 ¼ atþ1Zt þ btþ1:

Theorem 2.1 in Ref. [26] implies that there exists a non-negative random variable Ẑ

such that Zt converges in probability to Ẑ and the empirical measures ð1=tÞ
Pt21

s¼0dZs

converge almost surely to the distribution of Ẑ.

Equation (5) and the definition of Zt imply that Zt $ Yt $ 0 for all t. Given 1 . 0,

choose a . 0 such that P½Ẑ [ ½0; a�� $ 12 1=2. Since Zt converges in probability to Ẑ,

there exists T . 0 such that

P Xt [ V 21 ½0; a�
� �� �

¼ P Yt [ ½0; a�
� �

$ P Zt [ ½0; a�
� �

$ 12 1;

for all t $ T . Since V is proper, V 21ð½0; a�Þ is compact. Therefore, Xt is bounded in

probability.

Similarly, with probability 1,

lim inf
t!1

Pt V
21ð½0; a�Þ

� �
¼ lim inf

t!1

1

t

Xt21

s¼0

dYs
½0; a�
� �

$ lim inf
t!1

1

t

Xt21

s¼0

dZs
½0; a�
� �

¼ P Ẑ [ ½0; a�
� �

$ 12
1

2
:

Therefore Xt is almost surely bounded. A

Boundedness in probability on average combined with the Feller property ensures the

existence of an invariant probability measure: a Borel probability measure m on S such

that if X0 is distributed according to m (i.e. P½X0 [ A� ¼ mðAÞ for all Borel sets A , S),

then it is distributed according to m for all time, i.e. P½Xn [ A� ¼ mðAÞ for all Borel

A , S. The proof of the following proposition follows from a standard argument, see e.g.

[28] (Proposition 6.1.8). One can think of it as the stochastic analogue of the fact that the

v-limit set for a point is non-empty for dissipative maps.

Proposition 2.2. If the Markov chain (1) is bounded in probability on average, then the

set of weak* limit points of ð1=tÞ
Pt21

s¼0P½Xs [ �jX0 ¼ x� with x [ S is non-empty and

each of these limit points is an invariant probability measure. Alternatively, if the Markov

chain (1) is almost surely bounded, then the set of weak* limit points of Pt with X0 ¼

x [ S is almost surely non-empty and each of these limit points is an invariant probability

measure.

2.2 Persistence

When the population dynamics are bounded, population biologists are often interested

in understanding the conditions ensuring the long-term persistence of the populations.

A natural analogue of uniform persistence for stochastic models is given below. For these

definitions, it is useful to introduce the set of the population states within h . 0 of
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extinction

Sh ¼ x [ S : dðx; S0Þ # hf g;

where dðx; S0Þ ¼ miny[S0
kx2 yk.

From the ‘ensemble’ point of view, the following notion of persistence was introduced

by Chesson [18].

Definition 4. The Markov chain (1) is persistent in probability if for all 1 . 0 there exists

h . 0 such that

lim sup
t!1

P Xt [ ShjX0 ¼ x
� �

# 1; ð6Þ

for all x [ SnS0.

This definition asserts that reaching low densities or frequencies is very unlikely in the

long term. The next definition provides the ‘typical trajectory’ perspective on persistence.

Definition 5. The Markov chain (1) is almost surely persistent if for all 1 . 0 there exists

h . 0 such that

lim sup
t!1

Pt½Sh� # 1; almost surely ð7Þ

whenever X0 ¼ x [ SnS0.

This definition asserts that the fraction of time a typical population trajectory spends

near extinction states is very small.

When (1) is bounded, Proposition 2.2 implies that there exists an invariant probability

measure. If in addition (1) is persistent, then the following proposition implies that there

exists a positive invariant probability measure m, i.e. an invariant probability measure

satisfying mðS0Þ ¼ 0.

Proposition 2.3. If the Markov chain (1) is persistent in probability and bounded in

probability, then the set of weak* limit points of ð1=tÞ
Pt21

s¼0P½Xs [ �jX0 ¼ x� with x [
SnS0 is non-empty and each of these limit points is a positive, invariant measure.

Alternatively, if the Markov chain (1) is almost surely persistent and almost surely

bounded, then the set of weak* limit points of Pt with X0 ¼ x [ SnS0 is almost surely

non-empty and each of these limit points is almost surely a positive, invariant measure.

Proof. Suppose that the Markov chain (1) is persistent in probability and bounded in

probability. Let x [ SnS0 and assume that tk " 1 is such that ð1=tkÞ
Ptk21

s¼0 P½Xs [ �jX0 ¼

x� converges in the weak* topology to m. Proposition 2.2 implies that m is invariant. On the

other hand, given any natural number n, persistence in probability implies that there exists

hn . 0 and T . 0 such that

P Xt [ Shn
jX0 ¼ x

� �
, 1=n;

for t $ T . Hence, by weak* convergence mðShn
Þ # 1=n and mðS0Þ # lim supn!1

mðShn
Þ ¼ 0. The proof for the case of almost sure persistence and almost sure boundedness

is similar. A
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When a unique positive invariant probability measure exists and the system is

persistent, one can often show that if X0 ¼ x [ SnS0, then the distribution of Xt converges

to m and Pt converges almost surely to m. A powerful tool for verifying this stronger form

of persistence is the following theorem due to Ref. [52] (Chapter 15). This theorem relies

on the concept of w-irreducibility with respect to a Borel set B , S: there exists a Borel

measure w on B such that wðAÞ . 0 implies that P½Xn [ A for some njX0 ¼ x� . 0 for all

x [ B.

Theorem 2.4. Assume that the Markov chain (1) is w-irreducible on SnS0 and there exists

a positive function V : SnS0 ! Rþ, a compact set C , SnS0 and constant b . 0 such that

E VðX1ÞjX0 ¼ x
� �

# ð12 bÞVðxÞ þ 1CðxÞ for all x [ SnS0;

where 1C is the indicator function for C, i.e. 1CðxÞ ¼ 1 if x [ C and 0 otherwise. Then

there exists a unique positive invariant probability measure m and the distribution of Xt

converges in the weak* topology to m. Moreover,Pt almost surely converges in the weak*
topology to m whenever X0 ¼ x [ SnS0.

A drawback of requiring w-reducibility is that it can be difficult to verify or

demonstrably false for important classes of tractable models. For instance, many important

biological insights have been gleamed from models where there are a finite number of

environmental states (i.e. V is a finite set). These models rarely satisfy the irreducibility

condition and, consequently, may not have a unique positive invariant measure.

In the next three sections, I review results for persistence of scalar single species

models, multiple species models and structured species models (e.g. spatial, age or size

structure).

3. Scalar models

The simplest forms of the Markov chain (1) are the scalar models describing the dynamics

of an unstructured, closed population, i.e. k ¼ 1, S ¼ ½0;1Þ, S0 ¼ {0}, in which case (1)

simplifies to

Xtþ1 ¼ f ðXt; jtþ1ÞXt with Xt [ ½0;1Þ; ð8Þ

where f ðx;vÞ : ½0;1Þ £V! ð0;1Þ is a continuous function. Random difference

equations of this form have been studied extensively by many authors [3–

5,8,9,11,18,29,31,36,38,73]. Here, I focus on results that relate to persistence and

boundedness.

Reasonably, general criteria for extinction, persistence and population explosion are

given by the following theorem. The proof of extinction and explosion follows from

standard arguments that have been used by many authors [18,29,31,35,73]. The argument

for boundedness follows from Theorem 2.1 and persistence follows from the univariate

version of Theorem 1 in Ref. [62].

Theorem 3.1. Assume f ðx;vÞ is a positive decreasing function in x and

E½logþf ð0; jtÞ� , 1. Then

(i) if E½log f ð0; jtÞ� , 0, then limt!1Xt ¼ 0 for all x $ 0,

(ii) if limx!1E½log f ðx; jtÞ� . 0, then limt!1Xt ¼ 1 for all x . 0 and
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(iii) if E½log f ð0; jÞ� . 0 and limx!1E½log f ðx; jtÞ� , 0, then (8) is bounded in

probability, almost surely bounded, and almost surely persistent.

The assumption is that f ðx;vÞ is decreasing with x holds for many ‘classical’ single

species models. However, this assumption does not hold for species exhibiting an Allee

effect [25]. Ellner [29] proved results for models where x 7! f ðx;vÞ is not monotonic and

x 7! xf ðx;vÞ is increasing.

Proof. Assume that E½log f ð0; jÞ� , 0 and X0 . 0. Then by the Strong Law of Large

Numbers,

lim sup
t!1

1

t
logXt ¼ lim sup

t!1

1

t

Xt21

s¼0

log f ðXs; jsþ1Þ þ logX0

 !

# lim
t!1

1

t

Xt21

s¼0

log f ð0; jsþ1Þ þ logX0

 !
¼ E log f ð0; jtÞ

� �
, 0;

with probability 1. Hence, limt!1Xt ¼ 0 with probability 1.

Assume that limx!1E½log f ðx; jÞ� . 0 and X0 . 0. Then by the Strong Law of Large

Numbers,

lim inf
t!1

1

t
logXt ¼ lim inf

t!1

1

t

Xt21

s¼0

log f ðXs; jsþ1Þ þ logX0

 !

$ lim
t!1

1

t

Xt21

s¼0

lim
x!1

log f ðx; jsþ1Þ þ logX0

 !
¼ lim

x!1
E log f ðx; jtÞ
� �

. 0:

with probability 1. Hence, limt!1Xt ¼ 1 with probability 1.

Assume that E½log f ð0; jÞ� . 0 and limx!1E½log f ðx; jtÞ� , 0. To verify boundedness,

choose M . 0 and 1 . 0 such that E½log f ðx; jtÞ� # 21 for all x $ M. Define V :

½0;1Þ! ½0;1Þ to be the identity function VðxÞ ¼ x. Define at ¼ f ðM; jtþ1Þ. Define

bt ¼ f ð0; jtÞM. Since f is decreasing inM, Xtþ1 # atþ1Xt whenever Xt $ M. On the other

hand, Xtþ1 # f ð0; jtþ1ÞM ¼ btþ1 whenever Xt # M. Since E½logþbt� , 1 by assumption

and E½logat� # 21 by definition, Theorem 2.1 implies that Xt is bounded in probability

and almost surely bounded. The proof of almost surely persistent follows verbatim as in

the proof of Ref. [62] (Theorem 1). The compactness assumption in this proof is only

needed for S0 which equals {0} for (8). A

Theorem 3.1 suggests the following conjecture.

Conjecture 1. Under the same assumptions of Theorem 3.1(iii), (8) is persistent in

probability.

Example 3.2. (The stochastic Hasell model). To illustrate the utility of Theorem 3.1,

consider Hassell’s [39] single species model in which v ¼ ðl; bÞ and

f ðx;vÞ ¼
l

ð1þ xÞb
;
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where l is the intrinsic fitness of an individual, and b . 0 determines the strength of

intraspecific competition. For this model,

E log f ðx; jtÞ
� �

¼ E log lt
� �

2 E½bt�logð1þ xÞ:

Hence, limx!1E½log f ðx; jtÞ� ¼ 21 and E½log f ð0; jtÞ� ¼ E½log lt�. Theorem 3.1 implies

almost sure extinction if E½loglt� , 0 and almost sure persistence if E½log lt� . 0. A

To arrive at stronger conclusions, more assumptions about either the form of the

nonlinearity or the noise is necessary. With respect to the form of the nonlinearity, Ellner

[29] (Theorem 2.2) showed that a monotonicity assumption on x 7! f ðx;vÞ ensures

convergence in distribution to a positive random variable. In the case of the stochastic

Hassell model described in Example 3.2, this convergence occurs whenever bt [ ð0; 1�
and E½log lt� . 0.

Theorem 3.3. [28]. Assume that Fðx;vÞ ¼ xf ðx;vÞ is continuously differentiable and

strictly increasing in x, f ðx;vÞ is strictly decreasing in x. If E½log f ð0; jtÞ� . 0 and

limx!1E½log f ðx; jtÞ� , 0, then there exists a positive invariant probability measure m and

the distribution of Xt converges in the weak* topology to m whenever X0 ¼ x . 0.

The assumption that x 7! Fðx;vÞ is strictly increasing implies Fð�;vÞ is a monotone

map for each v. For deterministic systems, this monotonicity provides a lot of leverage to

understand the map dynamics even in higher dimensions, as reviewed in Ref. [41]. This

leverage has been extended to random maps as reviewed by Chueshov [24]. In the special

cases of the stochastic Beverton–Holt model Xtþ1 ¼ ðltþ1=ð1þ atþ1XtÞÞXt and the

stochastic Beverton–Holt model with survivorship Xtþ1 ¼ ðltþ1=ð1þ atþ1XtÞÞ

Xt þ stþ1Xt; a result similar to Theorem 3.3 was proven by Haskell and Sacker [38] and

Bezandry et al. [8], respectively.

When bt . 1 for the stochastic Hassell model, monotonicity fails (i.e. the map x 7!

xf ðx;vÞ is unimodal) and other assumptions are necessary to ensure convergence to a

positive random variable. Vellekoop and Hoögnaäs [73] proved an ergodic form of

persistence by placing stronger assumptions on the random variables jt. Their result is

applicable to the Hassell model under the assumption that lt is constant. The proof uses

the Lyapunov function characterization of ergodicity described in Theorem 2.4.

Theorem 3.4. [73]. Assume that

f ðx;vÞ ¼ lgðxÞ2v;

where g is a positive differentiable function satisfying x 7! xg0ðxÞ=gðxÞ is strictly

increasing on ½0;1Þ. Assume that jt are i.i.d. positive random variables with E½jt�;
E½j2t � , 1 and a positive density on ð0; yÞ. If l . 1, then there exists a positive invariant

probability measure m, the distribution of Xt converges to m whenever X0 ¼ x . 0, and

the empirical measures Pt converge almost surely to m whenever X0 ¼ x . 0.

Since gðxÞ ¼ 1þ x satisfies xg0ðxÞ=gðxÞ ¼ x=ð1þ xÞ, Theorem 3.4 applies to the

stochastic Hassell model with lt constant and jt ¼ bt. This theorem is also applicable to

the stochastic Ricker equation Xtþ1 ¼ Xtexpðr 2 atþ1XtÞ where r . 0 is the intrinsic per-

capita growth rate of the population and jt ¼ at measures the intensity of interspecific

competition. Gyllenberg et al. [35] studied the stochastic Ricker model when either rt or at
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varies randomly. More recently, Fagerholm and Hoögnaäs [31] have studied the dynamics

of the stochastic Ricker model when both rt and at vary randomly. Quite surprising, they

prove that if E½rt� ¼ 0, then (8) is null recurrent: there exists no positive invariant

probability measure despite P½Xt [ A infinitely often� ¼1 for all Borel sets A with

positive Lebesgue measure.

Theorem 3.5. [31]. Consider the stochastic Ricker model Xtþ1 ¼ Xtexpðrtþ1 2 atþ1XtÞ

where

. r1; r2; . . . is a sequence of i.i.d. random variables such that E½rt� , 1 and rt has a

positive density on ð21;1Þ,

. a1; a2; . . . is a sequence of positive i.i.d. random variables independent of rt such

that E½at� , 1 and

. there exists xc . 0 such that E½expðr1xÞ� , 1 for all 0 # x # xc.

Then one of the following statements holds

extinction: If E½rt� , 0, then Xt converges to 0 with probability 1,

null recurrence: if E½rt� ¼ 0 and X0 . 0, then Xt is null recurrent, or

persistence: if E½rt� . 0, then there exists a positive invariant measure m such that the

distribution of Xt converges to m in the weak* topology.

Fagerholm and Hoögnaäs [31] and Gyllenberg et al. [35] also studied the case when

at # 0 with positive probability. In this case, the dynamics have the potential to be

explosive (i.e. the intraspecific interactions enhance growth) and, consequently, the

analysis is more subtle. This case was motivated by numerical studies where rt and 1=at
were normally distributed.

4. Multiple species interactions

For multiple species interactions in fluctuating environments, one can consider models of

the form

Xi
tþ1 ¼ f iðXt; jtÞX

i
t with i ¼ 1; . . . ; k; ð9Þ

where Xi
t is the density or frequency of species i at time t. For these models S is a closed

subset of Rk
þ ¼ {x [ Rk : xi $ 0} and S0 ¼ {x [ S :

Q
ixi ¼ 0} corresponds to the

extinction of one or more species. These models have been used extensively to understand

under what conditions environmental stochasticity and species interactions facilitate or

disrupt species or genetic diversity [1,17,18,20,23,50,70,71].

Despite extensive numerical and theoretical work, there are (to the best of my

knowledge) only two sets of mathematical results concerning persistence for these

multispecies models. The first set of results [22,28] applies to two-species competitive

systems. The second set of results [62] apply to k species systems provided the dynamics

satisfy an appropriate compactness assumption. Both of these results utilize the mean

per-capita growth rates of populations when rare. More specifically, define the mean

per-capita growth rate of species i at population state x to be

liðxÞ ¼ E½log f iðx; jtÞ�; ð10Þ

and define the mean per-capita growth rate of species i at invariant probability measure
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m to be

liðmÞ ¼

ð
liðxÞmðdxÞ: ð11Þ

When m is ergodic (i.e.
Ð
E½hðFðx; j1Þ�mðdxÞ ¼

Ð
hðxÞmðdxÞ if and only if h is a constant

function m-almost surely), liðmÞ is the long-term average of the per-capita growth

rate of population i when in a system supported by the invariant measure m. More

precisely, since each of the sets {xi ¼ 0} is invariant under the dynamics in (9),

there exists a set suppðmÞ , {1; . . . ; k} such that for m-almost all x, xi . 0

if and only if i [ suppðmÞ: One can interpret suppðmÞ as the set of populations

supported by m.

4.1 Competition between two species

For competitive interactions between two species, Chesson and Ellner [22] and Ellner [28]

proved that a ‘mutual invasibility’ condition implies stochastic persistence. In all of their

results, they built on the single species results by assuming

B1: for each i ¼ 1; 2, there exists a positive invariant measure mi such that the

distribution of Xi
t converges to mi in the weak* topology whenever Xi

0 . 0 and

X
j
0 ¼ 0 for j – i, and

B2: the mean per-capita growth rates liðxÞ are continuous functions of x [ S.1

The mutual invasibility condition [71] asserts that the species coexist provided that

l1ðm2Þ . 0 and l2ðm1Þ . 0. Intuitively, whenever one species, say species 2, is rare, the

dynamics of the other species approach its invariant measure m1. At this invariant

measure, the per-capita growth rate of species 2 is positive (i.e. l2ðm1Þ . 0) and,

consequently, increases in abundance. Since each species increases in abundance when

rare, they coexist. Under the assumption that the competitive dynamics are monotonic,

Chesson and Ellner [22] proved that mutual invasibility implies stochastic persistence in

probability.

Theorem 4.1. [22]. Assume the Markov chain (9) with k ¼ 2 satisfy B1–B2, and

. the equations x1 ¼ F1ððx1; 0Þ; jtÞ and x2 ¼ F2ðð0; x2Þ; jtÞ hold with probability 1

only for x1 ¼ 0 and x2 ¼ 0, respectively, and

. the functions Fiðx;vÞ are non-decreasing in x1 and x2, and positive whenever

xi . 0.

Then l1ðm2Þ . 0 and l2ðm1Þ . 0 imply (9) is persistent in probability.

It is natural to make the following conjecture. This conjecture follows from Theorem

5.2 whenever the dynamics of (9) asymptotically enter a compact set.

Conjecture 2. Under the conditions of Theorem 4.1, (9) is almost surely persistent.

Under a stronger assumption about the noise terms jt in Theorem 4.1, Ellner [28]

proved that there exists a unique positive invariant measure m such that the distribution of

Xt converges to m whenever X1
0 . 0 and X2

0 . 0.
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Example 4.2. Chesson and Ellner [22] illustrated the applicability of Theorem 4.1 with the

following competition model:

X1
tþ1 ¼

j1tþ1X
1
t

1þ j1tþ1X
1
t þ j2tþ1X

2
t

þ aX1
t ;

X2
tþ1 ¼

j2tþ1X
2
t

1þ j1tþ1X
1
t þ j2tþ1X

2
t

þ aX2
t ;

where jit . 0 represents the per-capita fecundity of species i and 0 , a , 1 represents the

fraction of individuals surviving to the next time step. j1t and j
2
t are assumed to have an

exchangeable joint distribution (i.e. P½ðj1t ; j
2
t Þ [ A� ¼ P½ðj2t ; j

1
t Þ [ A� for any Borel set

A , R2
þ). If E½logðj

1
t þ aÞ� . 0, then Theorem 3.3 implies that B1 is satisfied. By the

exchangeable assumption, l1ðm2Þ ¼ l2ðm1Þ. Following Chesson [19], define

gðvÞ ¼ log
v1

1þ v2x2
þ a

� �
:

Chesson [19] proved that

l1ðm2Þ ¼ 2
1

2
E

ðj2t
j1t

ðj2t
j1t

›2gðvÞ

›v1v2

dv1dv2

" #
:

Since ð›2gðvÞ=›v1v2Þ , 0, it follows that l1ðm2Þ ¼ l2ðm1Þ . 0. A

The monotonicity assumption of F is too strong to cover all models of competitive

interactions. For instance, Theorem 4.1 does not apply to stochastic Ricker models of

competition (see Example 4.4). However, Ellner [28] proved that under a stronger

assumption on the noise terms jt, it is possible to show stochastic persistence for such

models. The theory presented in the next section provides a similar approach to verifying

persistence for these models.

Theorem 4.3. [28]. Assume B1 and B2 and

. (9) is w irreducible on ð0;1Þ £ ð0;1Þ,

. (9) is strongly continuous, i.e. for any measurable A , R2
þ, P½X1 [ AjX0 ¼ xn�

converges to P½X1 [ AjX0 ¼ x� whenever xn ! x and

. for any x [ R2
þ, supt.0E½log

þXi
tjX0 ¼ x� , 1 for i ¼ 1; 2.

If l1ðm2Þ . 0 and l2ðm1Þ . 0, then there exists a unique positive invariant measure m and

the distribution of Xt converges to m in the weak* topology whenever X
1
0 . 0 and X2

0 . 0.

Example 4.4. (Ricker equations of competition). To illustrate the applicability of Theorem

4.3, consider a stochastic version of the Ricker equations of competition

Xi
tþ1 ¼ Xi

t exp jitþ1 2 Xi
t 2 ajX

j
t

� �
; i; j ¼ 1; 2; i – j; ð12Þ

where aj . 0 are interspecific competition coefficients and jitþ1 are normally distributed

intrinsic rates of growth with means ri. Since expðjitÞ are log-normally distributed, they
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have a positive density on ð0;1Þ. Theorem 3.5 implies that B1 holds whenever ri . 0 for

i ¼ 1; 2. In particular, both species are persistent in isolation under this assumption.

The positive density of ðj1t ; j
2
t Þ on ð0;1Þ £ ð0;1Þ implies that (12) is w-irreducible on

ð0;1Þ £ ð0;1Þ with respect to Lebesgue measure. The strong-continuity condition is

easily verified. The boundedness condition follows from Theorem 2.1 with

VðxÞ ¼ x1 þ x2. Let mi with i ¼ 1; 2 be the invariant probability measures in assumption

B1. Theorem 3.3 implies persistence in probability for the competing species whenever

liðmjÞ ¼ ri 2 ajE½X̂
j� . 0 for i ¼ 1; 2 and j – i;

where X̂ j is random variable with law mj. By invariance of mj,

E½log X̂ j� ¼ E½logX
j
1jX

j
0 ¼ X̂ j� ¼ E log X̂

j
exp ðj

j
1 2 X̂ jÞ

	 
h i
¼ E½log X̂ j� þ rj 2 E½X̂ j�:

Hence, E½X̂ j� ¼ rj and coexistence occurs if

ri . ajrj for i ¼ 1; 2 and j – i:

Thus, the conditions for coexistence are the same for this stochastic version of the Ricker

equations of competition and their deterministic counterpart. A

4.2 General multispecies

Recently, Schreiber et al. [62] have extended the results of Chesson and Ellner to an

arbitrary number of species by developing stochastic analogues of the classical

permanence criteria for deterministic systems [42,43]. These results are based on the

following assumptions about (9).

C1: There exists a compact set S of Rk
þ ¼ {x [ Rk : xi $ 0} such that Xt [ S for all

t $ 0.

C2: f iðx;vÞ are strictly positive functions, continuous in x and measurable in v:
C3: For all i, supx[SE log f iðx; jtÞ

� �2h i
, 1:

Assumption C1 requires that the populations remain bounded for all time. Assumption C2

implies that {Xt}
1
t¼0 is Feller. Assumption C3 is a technical assumption met by many

models.

Under these assumptions, Schreiber et al. [62] proved that if every invariant measure

supported by S0 can be invaded by some species, then the system is persistent.

Theorem 4.5. [62]. Assume C1–C3 and one of the following equivalent conditions hold:

(i) for all invariant probability measures m supported on S0,

l*ðmÞ :¼ max
i
liðmÞ . 0; or

(ii) there exists a positive vector p ¼ ðp1; . . . ; pkÞ . 0 such that

X
i

piliðmÞ . 0 ð13Þ

Journal of Difference Equations and Applications 1393



for all ergodic probability measures m supported by S0:
Then the Markov chain (9) is almost surely persistent.

While this theorem, as shown below, applies to many models, it has several

limitations. First, it does not provide a statement about persistence in probability.

Nonetheless, it is natural to make the following conjecture.

Conjecture 3. Under the assumptions of Theorem 4.5, (9) is persistent in probability.

A second limitation of Theorem 4.5 is that it requires dynamics asymptotically confined

to a compact set. While this limitation as discussed earlier might be biologically realistic, it

would be useful to have a result that applies to stochastically bounded systems. In particular,

one could askwhether the following conjecture (or an appropriate modification of it) is true.

Conjecture 4. Assume that (9) is bounded in probability (respectively, almost surely),

C1–C3 hold, and l*ðmÞ . 0 for all invariant measures m supported by S0. Then (9) is

persistent in probability (respectively, almost surely).

Theorem 4.5 does not ensure that there is a unique positive stationary distribution. For

this stronger conclusion, there has to be sufficient noise in the system to ensure after enough

time any positive population state can move close to any other positive population state.

Theorem 4.6. [62]. Assume that {Xt} is w-irreducible over SnSh for all h . 0, and that

the assumption of Theorem 4.5 holds. Then there exists a unique invariant probability

measure m such that mðS0Þ ¼ 0 and the occupation measuresPt converge almost surely to

m as t!1, whenever X0 ¼ x [ SnS0.

Note that w-irreducibility condition does not require that the same w is used for all

h . 0. Under a stronger irreducibility condition, Schreiber et al. [62] prove that the

distribution of Xt converges to m whenever X0 [ SnS0.

Example 4.7. (Coexistence of many competitors). To illustrate the applicability of

Theorem 4.6 to higher dimensional models of competition, consider the lottery model of

Chesson and Warner [23]. This model describes species requiring a territory or ‘home’

(an area held to the exclusion of others) in order to reproduce. Moreover, space is always in

short supply and, consequently, all patches are occupied. Let Xi
t denote the fraction of space

occupied by species i at time t, jit the fecundity of species i at time t, and d the fraction of

individuals dying each time step. Under these assumptions, the lottery model is given by

Xi
tþ1 ¼ ð12 dÞXi

t þ d
Xi
tj

i
tþ1P

jX
j
tj

j
tþ1

; i ¼ 1; . . . ; k: ð14Þ

Here S is the probability simplex {x [ Rk
þ :
P

ixi ¼ 1}. Let log jit be normally distributed

with means bi . 0 and variances s2
i $ 0. Furthermore, assume that j1t ; . . . ; j

k are

independent. Since log-normal distributions have a positive density on ð0;1Þ, {Xt} is

w-irreducible on Sh with respect to Lebesgue measure for all h . 0.

If b1 . · · · . bk take on distinct values and there is no environmental noise (i.e.

si ¼ 0), then species 1 excludes all the remaining species, i.e. limt!1X
i
t ¼ 0 for i ¼

2; . . . ; k whenever X1
0 . 0. To show how environmental stochasticity can alter this
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ecological outcome, consider the case that b1 ¼ · · · ¼ bk and si . 0 for all i. Let m be any

ergodic probability measure on S0. Choose a species i such that mð{x [ S : xj .

0 iff j ¼ i}Þ ¼ 1. By Taylor’s theorem,

liðmÞ ¼ 2d þ d

ð
E

jitP
jxjj

j
t

" #
mðdxÞ þOðd 2Þ: ð15Þ

Independence and Jensen’s inequality imply

ð
E

jitP
jxjj

j
t

" #
mðdxÞ . E½j i�

ð
1P

jxjE½j
j
t�
mðdxÞ ¼ 1; ð16Þ

where the final equality follows from the assumption that b1 ¼ · · · ¼ bk. Combining

equations (15) and (16) imply that

liðmÞ . 0

provided that d . 0 is sufficiently small. By compactness of the invariant probability

measures on S0, the ergodic decomposition theorem, and the fact that liðmÞ ¼ 0 for all

ergodicmeasures supporting species i, it follows that l*ðmÞ . 0 for all invariant probability

measures supported by S0 whenever d . 0 is sufficiently small. Hence, Theorem 4.6

implies that there is a unique positive stationarymeasure and (14) is almost surely persistent.

By continuity, these conclusions still apply whenever maxi;jjbi 2 bjj is sufficiently small.

Therefore, environmental stochasticity can mediate coexistence between an arbitrary

number of competitors. A

Example 4.8. (Rock, paper, scissors). In the basic lottery model described in Example 4.7

per-capita reproductive rates are independent of species frequencies. Frequency-dependent

feedbacks, however, can be quite important. To illustrate these feedbacks and to illustrate

that persistence may require more than invasibility by a missing species, consider a rock–

paper–scissor version of the lottery model. To model this intransitive interaction, we

assume that the per-capita reproductive rates are linear functions of the species frequencies

biðXt; jtþ1Þ ¼
X
j

j
ij
tþ1X

j
t;

where

jt ¼

bt at gt

gt bt at

at gt bt

0
BB@

1
CCA

and at . bt . gt . 0 for all t. The frequency-dependent lottery model becomes

Xi
tþ1 ¼ ð12 dÞXi

t þ d
Xi
tbiðjtþ1;XtÞP
jX

j
tbjðjtþ1;XtÞ

; i ¼ 1; 2; 3: ð17Þ
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For any pair of strategies, say 1 and 2, the dominant strategy, 1 in this case, displaces

the subordinate strategy. Indeed, assume X3
0 ¼ 0. If yt ¼ X2

t =X
1
t and zt ¼

P
ij
i
tþ1X

i
t, then

ytþ1 ¼
ð12 dÞzt þ d gtþ1X

1
t þ btþ1X

2
t

� �
ð12 dÞzt þ d btþ1X

1
t þ atþ1X

2
t

� � yt , yt

is a decreasing sequence that converges to 0. Hence, the only ergodic, invariant probability

measures on D0 are Dirac measures dx supported on x ¼ ð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þ. At
these ergodic measures, the invasion rates are given by

A straightforward algebraic competition reveals that the conditions for persistence are

satisfied if and only if

E log 12 d þ dat=bt

� �� �
þ E log 12 d þ dgt=bt

� �� �
. 0: ð18Þ

For small d . 0, a Taylor’s approximation similar to Example 4.7 yields the following

simpler condition for persistence:

E
at

bt

� �
þ E

gt

bt

� �
. 2;

for d . 0 sufficiently small. A

I conjecture that if the opposite inequality of (18) holds, then persistence does not

occur. More generally,

Conjecture 5. Assume that C1–C3 hold, (9) is w-irreducible over SnSh for all h . 0,

and l*ðmÞ , 0 for all invariant measures m supported on S0. Then

lim
t!1

Y
i

Xi
t ¼ 0

with probability 1.

Benaı̈m et al. [7] proved the continuous-time version of this conjecture for stochastic

ODEs on the probability simplex with a small diffusion term. Without the w-irreducibility

assumption, this conjecture is definitively false.

5. Structured populations

Populations often consist of a heterogeneous mixture of individuals in different states such

as its age, size, physiological condition or location in space [16]. If the population consists

of k states, then its dynamics on S ¼ Rk
þ can be described by nonlinear, stochastic matrix

m l1ðmÞ l2ðmÞ l3ðmÞ

dð1;0;0Þ 0 E log 12 d þ dat=bt

� �� �
E log 12 d þ dgt=bt

� �� �
dð0;1;0Þ E log 12 d þ dgt=bt

� �� �
0 E log 12 d þ dat=bt

� �� �
dð0;0;1Þ E log 12 d þ dat=bt

� �� �
E log 12 d þ dgt=bt

� �� �
0
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models of the form

Xtþ1 ¼ AðXt; jtþ1ÞXt; ð19Þ

where Xt ¼ ðX1
t ; . . . ;X

k
t Þ is the vector of population densities across the different states

and Aðx;vÞ is a non-negative matrix whose entries represent transition probabilities,

survivorship likelihoods and fecundities. Here, the extinction set is S0 ¼ {0}.

When population abundances are low, it seems reasonable to approximate the

dynamics of (19) with the linear equation

Xtþ1 ¼ Að0; jtþ1ÞXt

in which case,

Xt ¼ Að0; jtÞ . . .Að0; j1ÞX0:

Under suitable conditions (e.g. Að0; jtÞ are primitive; and Eð lnkAð0; j1Þkj jÞ , 1Þ, the work

of Refs [2,59] implies that there exists a quantity g such that

lim
t!1

1

t
ln X1

t þ · · ·þ Xk
t

� �
¼ g with probability 1: ð20Þ

In other words, the total population size X1
t þ · · ·þ Xk

t grows approximately like

ðX1
0 þ · · ·þ Xk

0Þe
gt. The quantity g is known as the dominant Lyapunov exponent and is

also known as the stochastic growth rate in theoretical ecology [16,67]. For the linearized

model, if g . 0, the population grows exponentially and persists. Alternatively, if g , 0,

the population is driven to extinction.

To contend with the nonlinearities in structured population models, Hardin et al. [38]

extended the work of Ellner [29] to structured populations in serially uncorrelated

environments. Under a slightly different set of assumptions, Benaı̈m and Schreiber [6]

proved a similar result that also addresses convergence of the empirical measures and also

applies to asymptotically stationary environments. Since these latter assumptions are

slightly easier to present, I will focus on them. In addition to standing assumptions

A1–A3, the following additional assumptions are needed.

D1: Primitivity: There is a positive integer T such that with probability 1

AðXt; jtÞ . . .AðX1; j1Þ has all positive entries

whenever X1 [ Rk
þ and t $ T .

D2: Smoothness: The map ðx;vÞ! Aðx;vÞ is Borel, x 7! Aðx;vÞx ¼ Fðx;vÞ is twice
continuous differentiable for all v [ S, x [ Rk

þ and

E sup
kxk#1

lnþ kFðx;vÞk þ kDxFðx;vÞk þ kD2
xFðx;vÞk

� � !
, þ1:

D3: Intraspecific competition: The matrix entries Aijðx;vÞ satisfy

›Aij

›xl
ðx;vÞ # 0;

Journal of Difference Equations and Applications 1397



for all v and x. Moreover, for each i there exists some j and l such that this

inequality is strict for all v and x.

D4: Compensating density dependence: All entries of the derivative of x 7! Aðx;vÞx
are non-negative for all v and x.

Assumption D1, roughly translated, asserts that after sufficiently many time steps,

individuals in every state contribute to the abundance of individuals in all other states. For

constant environments (i.e. S consisting of a single environmental state), this assumption

corresponds to a matrix being primitive [16,45]. Assumption D2 is purely technical, but is

met for most models. It is worth noting that Hardin et al. [37] do not require smoothness.

Assumption D3 accounts for competition between the stages. Assumption D4 ensures that

(19) is a random, monotone dynamical system [24].

When g is negative for the linearization, extinction is expected as the following

proposition demonstrates.

Proposition 5.1. [6] Assume D1 and D3 hold. Then

lim sup
n!1

1

n
lnkXtk # g;

with probability 1 and where g is the Lyapunov exponent defined in (20). In particular, if

g , 0, then

lim
n!1

Xt ¼ 0

with probability 1.

When g is positive for the linearization, stochastic persistence is expected as the

following theorem shows.

Theorem 5.2. [6] Assume D1–D4 and the assumptions of Theorem 2.1 hold (i.e. the

system is bounded). If g . 0, then there exists an invariant probability measure m such

that mðS0Þ ¼ 0, the distribution of Xt converges to m whenever X0 ¼ x [ SnS0. Moreover,

with probability 1, Pt converges towards m whenever X0 ¼ x [ SnS0.

The monotonicity assumptions D3 and D4 are definitely not necessary for persistence

(see, e.g. Ref. [6], Theorem 2). Hence, it is natural to conjecture that

Conjecture 6. Assume D1 and D2 hold and the assumptions of Theorem 2.1 hold. If

g . 0, then (19) is almost surely persistent and persistent in probability.

To illustrate the applicability of Theorem 5.2, we consider an example from Ref. [6].

Example 5.3. (Biennial plants). Biennial plants typically flower only in the second year of

their existence after which they die. However, for many biennial species, individual plants

may exhibit delayed flowering in which they flower in a later year. Delayed flowering can

serve as a bet-hedging strategy in uncertain environments; Roerdink [56] provided a

detailed analysis of a density-independent model of delayed flowering. Here, I describe a

density-dependent version of his model. Let X1
t denote the abundance of 1-year-old

individuals in year t and X2
t denote the abundance of individuals greater than one year old

in year t. Let p be the probability that a plant flowers during its second year. Let jtþ1s1ðXtÞ

S.J. Schreiber1398



be the mean number of germinating seeds produced by a flowering plant in year t where

s1ðx1; x2Þ ¼ 1=ð1þ b1ðx1 þ x2ÞÞ. Let s2ðx1; x2Þ ¼ a=ð1þ b2ðx1 þ x2ÞÞ be the probability

that a plant survives to the next year. Then the plant dynamics are given by

Xtþ1 ¼
0 pjtþ1s1ðXtÞ

s2ðXtÞ ð12 pÞs2ðXtÞ

 !
Xt: ð21Þ

Let j1; j2; . . . be a sequence of independent random variables that are Gamma distributed,

i.e. having the probability density function

gðtÞ ¼
1

ubGðkÞ
t k21 expð2t=uÞ;

where the scale parameter is u . 0, the shape parameter is k . 0 and GðkÞ ¼
Ð1
0
t k21e2tdt.

The mean and variance of j1 are given by ku and ku2. Roerdink [56] found an explicit

formula for the dominant Lyapunov exponent. For 0 , p , 1, the dominant Lyapunov

exponent is given by

g ¼ ln að12 pÞ þ K21

ð1
0

lnð1þ tÞt k21ð1þ tÞ2ke2ztdt;

where K ¼
Ð1
0
t k21ð1þ tÞ2ke2ztdt and z ¼ ð12 pÞ2=ðupÞ. For p ¼ 0, g ¼ ln a, while for

p ¼ 1, g ¼ ð1=2Þ lnðauÞ þ cðaÞ
� �

, where cðaÞ is the digamma function. Roerdink proved

that ›g=›p is positive at p ¼ 0 and approaches 21 as p approaches 1. Hence, the

stochastic growth rate g of the population is maximized by the population playing an

appropriate bet-hedging strategy for flowering (i.e. p strictly between 0 and 1). Therefore,

Theorem 5.2 implies that persistence is more likely for populations playing a bet hedging

strategy.

6. Concluding remarks and future directions

While these results represent the promising beginnings of a general theory for persistence

of stochastic difference equations, there is still much work to be done. The conjectures

sprinkled throughout this review are merely the tip of the iceberg. To give a sense of some

other issues, I discuss three directions for future research.

First and foremost, one can ask ‘Is there a general theorem unifying all the particular

cases of the persistence results?’ For dissipative deterministic models, there are two

characterizations of uniform persistence. The average Lyapunov characterization due to

Hutson [46,47] requires the existence of a non-negative function that increases on average

for trajectories near the extinction set. Alternatively, Butler and Waltman [13], Garay [32]

and Hofbauer and So [44] provided topological characterizations of uniform persistence in

terms of Morse decompositions and stable sets. Intuition suggests there should be a

stochastic analogue of the average Lyapunov function characterization. Indeed, Benaı̈m

et al. [7] used average Lyapunov functions for the deterministic models to prove

persistence for the stochastically perturbed models. Whether this argument can be

extended is an exciting and challenging open problem.

Many environmental signals are positively autocorrelated in time [72]. Understanding

the impacts of these autocorrelations for population persistence and species interactions is

a very active area of research in theoretical and empirical population biology

[34,40,51,55,57,58,61,64]. To account for these autocorrelations, the environmental
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sequence of random variables, j1; j2; . . . , can no longer be independent. However, they

may be stationary or even asymptotically stationary, i.e. jP½Xt [ A0; . . . ;Xtþn [
An�2 P½Xtþs [ A0; . . . ;Xtþsþn [ An�j! 0 as t!1 for any Borel sets A0; . . . ;An , V,

n $ 1 and s $ 0. Benaı̈m and Schreiber [6] (Theorem 4) made this extension for

structured populations models satisfying monotonicity assumptions as in Theorem 5.2.

Similar extensions have yet to be made for multispecies models or non-monotonic

structured models.

In order to apply the methods reviewed here, there is a desperate need for general

methods to estimate the mean per-capita growth rates liðmÞ and the dominant Lyapunov

exponent g. One approach is to consider ‘small noise approximations’ of these quantities

when distribution of jt is close to a Dirac measure. For structured population models

where Að0; jtÞ ¼ Aþ 1Bt for a fixed non-negative matrix A and a sequence of random

matrices Bt with mean 0, Tuljapurkar [67] developed second-order and higher order

approximations of the dominant Lyapunov exponent g with respect to 1. This

approximation yielded many useful insights into stochastic demography and

metapopulation persistence [12,54,61,68,69,74]. Alternatively, for models of competing

species, Chesson developed methods for estimating liðmÞ when the deterministic

dynamics converge to an equilibrium and the small noise generates small demographic

fluctuations around this equilibrium [19–21]. Extending these methods to arbitrary species

interactions and random perturbations from non-equilibrium dynamics, however, is an

important remaining challenge.

In conclusion, this review highlights the progress, challenges and opportunities in

using stochastic difference equations to understand the conditions necessary for

population persistence. The speed at which this review becomes hopelessly outdated may

be the best measurement of its success.
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Note

1. This assumption is made in Ref. [28] and is met for most models. A slightly weaker assumption
is made in Ref. [22].
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