
ARTICLE IN PRESS
0022-5193/$ - se

doi:10.1016/j.jtb

�Tel.: +1 757

E-mail addr
Journal of Theoretical Biology 242 (2006) 844–852

www.elsevier.com/locate/yjtbi
Persistence despite perturbations for interacting populations

Sebastian J. Schreiber�

Department of Mathematics, The College of William and Mary, Williamsburg, Virginia 23187-8795, USA

Received 25 October 2005; received in revised form 19 April 2006; accepted 24 April 2006

Available online 19 May 2006
Abstract

Two definitions of persistence despite perturbations in deterministic models are presented. The first definition, persistence despite

frequent small perturbations, is shown to be equivalent to the existence of a positive attractor i.e. an attractor bounded away from

extinction. The second definition, persistence despite rare large perturbations, is shown to be equivalent to permanence i.e. a positive

attractor whose basin of attraction includes all positive states. Both definitions set up a natural dichotomy for classifying models of

interacting populations. Namely, a model is either persistent despite perturbations or not. When it is not persistent, it follows that all

initial conditions are prone to extinction due to perturbations of the appropriate type. For frequent small perturbations, this method of

classification is shown to be generically robust: there is a dense set of models for which persistent (respectively, extinction prone) models

lies within an open set of persistent (resp. extinction prone) models. For rare large perturbations, this method of classification is shown

not to be generically robust. Namely, work of Josef Hofbauer and the author have shown there are open sets of ecological models

containing a dense sets of permanent models and a dense set of extinction prone models. The merits and drawbacks of these different

definitions are discussed.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

‘‘the concept of ‘persistence despite perturbations’ is
currently too vague to be useful’’—Stuart Pimm (1982,
p. 8).

A fundamental issue in population biology is what are
the minimal conditions to ensure the long-term survivorship
for all of the interacting components whether they be viral
particles, bio-chemicals, plants, or animals. When these
conditions are meet the interacting populations are said to
persist or coexist. One method to identify mechanisms
promoting persistence is the development and analysis of
mathematical models. Models provide a deductive frame-
work in which to simplify and unravel the complexities of
biological systems such as ecological communities or
immune systems. The first step in this simplification often
involves making a decision whether to focus on determi-
nistic or stochastic processes underlying the system
e front matter r 2006 Elsevier Ltd. All rights reserved.
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dynamics. For models emphasizing demographic stochas-
ticity, the extinction of all components in finite time is
inevitable due to finite population sizes and mortality events
occurring with positive probability. Persistence or coex-
istence for these stochastic models is measured in terms of
probabilities of survival for specified time intervals and,
consequently, is a relative notion depending on the intent of
the analysis. For systems with large number of individuals
or particles, the effects of demographic stochasticity tend to
average out and the stochastic dynamics are well approxi-
mated on long time intervals by the (conditionally) expected
dynamics (Freidlin and Wentzell, 1998). Hence, modelers
often study the deterministic counterparts of stochastic
models to hone their expectations about the dynamical
consequences of nonlinear interactions between popula-
tions. In contrast to the aforementioned stochastic models,
these deterministic models may have population trajectories
that persist indefinitely. While this persistence for infinite
time cannot occur in reality, one can view these persistent
trajectories as implying long-term survival for populations
experiencing weak demographic noise.
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For deterministic models, mathematical and theoretical
biologists have over the past century introduced various
definitions of persistence or coexistence including a positive
equilibrium attractor, a positive quasi-attractor, a positive
attractor, and permanence (Grimm and Wissel, 1997;
Jacobs and Metz, 2003; Jansen and Sigmund, 1998; Pimm,
1982; Schuster et al., 1979). While each of the existing
notions of persistence provides different insights into a
model’s dynamics, the purpose of this note is to introduce a
framework for classifying ecological dynamics as persistent
or as extinction prone and evaluating the aforementioned
definitions of persistence within this framework. The
proposed framework is motivated by three principles.
First, persistence of a population should be equated with
the existence of population trajectories that remain
bounded away from extinction in the presence of perturba-
tions. This principle tips its hat to the stochastic origins of
the deterministic models and captures the notion of what
Pimm (1982, p. 8) called ‘‘persistence despite perturba-
tions.’’ Persistent despite perturbations can mean lots of
different things as real world perturbations come in all
shapes and sizes. Since frequent large perturbations can
obliterate the deterministic signature of the dynamics, we
focus on two types of perturbations:‘‘frequent small
perturbations’’ and ‘‘rare large perturbations.’’ The second
principle is that non-persistent systems should be viewed as
‘‘prone to extinction’’. Hence, every model can be classified
as ‘‘persistent’’ or as ‘‘extinction prone.’’ Third, since
models are mere approximations to reality, generically a
persistence system or an extinction prone system should
remain persistent or extinction prone, respectively, under
small structural perturbations of the model. This frame-
work is described in further detail in Section 2. In Section
3, three classical definitions of persistence are evaluated
within this context. This evaluation reveals that persistence
despite frequent small perturbations is equivalent to the
existence of a positive attractor (i.e. an attractor bounded
away from extinction), while persistence despite rare large
perturbations is equivalent to permanence. Moreover,
while classifying systems as persistent or not persistent
despite frequent small perturbations is generically robust,
classifying systems as persistent or not persistent despite
rare large perturbations is not generically robust. In
Section 4, the merits and drawbacks of these different
definitions are discussed.

2. Classification of ecological dynamics

Let S denote the population state space which we assume
is a locally compact metric space with metric d. Let f :
S! S be a continuous map. Given an initial state x, f n

ðxÞ

defines the state of the system at time n. Let S0 denote the
closed set of states for which one or more populations are
not present and S1 ¼ SnS0. For a closed system, the ‘‘no
cats no kittens’’ principle implies that f ðS0Þ � S0. For
example, for models of n interacting species, S can be the
nonnegative orthant Rn

þ of Rn where x 2 Rn
þ corresponds
to the vector of species densities. The continuous map f can
be the time one map of an ecological differential equation
dxi=dt ¼ xigiðxÞ where giðxÞ denotes the per-capita growth
rate of species i. The extinction set S0 is given by the
boundary of the nonnegative orthant, qRn

þ ¼ fx 2 Rn
þ :Qn

i¼1 xi ¼ 0g. Alternatively, for replicator dynamics of n

interacting strategies (see, e.g. Hofbauer and Sigmund,
1998), S can be the simplex fx 2 Rn

þ :
Pn

i¼1 xi ¼ 1g where
x 2 S is the distribution of strategies in the population. The
map f can be given by f iðxÞ ¼ ðxigiðxÞÞ=ð

Pn
j¼1 xjgjðxÞÞ

where gi is the fitness of strategy i. The extinction set is
the boundary of the simplex S0 ¼ fx 2 S :

Qn
i¼1xi ¼ 0g.

More generally, f can correspond to matrix models,
integrodifference equations, time one maps of partial
differential equations, etc.
Before describing the properties, lets recall a few

definitions from dynamical systems. A point x 2 S is an
equilibrium if f ðxÞ ¼ x. A set K � S is invariant if
f ðKÞ ¼ K . For a set A � S, let A denote the closure of A.
A non-empty compact set A � S is an attractor if there
exists an open neighborhood U of A such that f ðUÞ � U

and \nX1f
n
ðUÞ ¼ A. For a point x 2 S, define the o-limit

set of x as oðxÞ ¼ fy : limk!1 f nk ðxÞ ¼ y for some
nk !1g. The basin of attraction of an attractor A,
denoted BðAÞ, is the set of points x such that oðxÞ � A. f

is called dissipative if there exists an attractor whose basin
of attraction is S. Since any biologically realistic model has
bounded dynamics, we assume throughout this article that
f is dissipative.

2.1. Persistence despite perturbations

Since populations that reach low densities or frequencies
are susceptible to extinction, any definition of persistence
requires the existence of states x 2 S such that f n

ðxÞ

remains bounded away from extinction for all time. In
other words, there exists x 2 S and �40 such that the
distance between f n

ðxÞ and S0 is greater than � for all n.
When such an x exists, there exists a compact invariant set
K disjoint from the extinction set S0. Indeed, one can
choose K to be oðxÞ. The existence of an x bounded away
from extinction is in itself not sufficient for persistence.
Consider, for example, a population genetics model with
two alleles at a single locus. Let x denote the frequency
of the first allele. If the fitness of homozygotes is a and
the fitness of heterozygotes is b, then the dynamics on
S¼½0; 1� with S0¼f0; 1g is given by f ðxÞ¼ðx2aþxð1�xÞbÞ=
ðx2aþ 2xð1� xÞbþ ð1� xÞ2aÞ. For all parameter values,
x ¼ 1

2
is an equilibrium for this system. If b4a (i.e. the

homozygotes have an advantage over heterozygotes), then
the system exhibits disruptive selection in which f n

ðxÞ

converges to 0 if xo1
2 and f n

ðxÞ converges to 1 if x41
2

(Fig. 1). Hence, even if the populations started at x ¼ 1
2
, the

slightest perturbation of the population would result in the
extinction of one allele.
Since biological systems are ‘‘constantly confronted by

the unexpected’’ (Holling, 1973), persistence should be
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Fig. 1. f ðxÞ ¼ ðx2aþ xð1� xÞbÞ=ðx2aþ 2xð1� xÞbþ ð1� xÞ2aÞ when

b4a. Solid circle indicates a stable equilibrium and open circle indicates

an unstable equilibrium. Cobwebbing for states initially near x ¼ 1
2 are

shown as dashed lines.

x=x0

y=xn

x1

f(x0) f(x1)

x2

f(xn-1)

ε

Fig. 2. An �-chain from x to y.

1Hofbauer et al. (1980, p. 286) say that a state x 2 S1 which � chains to
S0 for all �40 is a state that leads to exclusion (or extinction).

S.J. Schreiber / Journal of Theoretical Biology 242 (2006) 844–852846
equated with the existence of population trajectories that
remain bounded away from extinction despite perturba-
tions. To formalize this statement, the type of perturbation
needs to be specified. Two types of perturbations, frequent
small perturbations or rare large perturbations, are natural
to consider. For frequent small perturbations, Conley
(1978) provides the key concept, � chains. A set of points
x ¼ x0;x1; . . . ;xn ¼ y is an � chain from x to y if
dðf ðxiÞ;xiþ1Þo� for i ¼ 0; 1; . . . ; n� 1 (Fig. 2). Roughly,
an � chain is a population trajectory that gets an � sized
perturbation at every time step. With this concept in hand,
the following definition arises:

Definition 1. f is persistent despite frequent small perturba-

tions if there exists a state x 2 S1 and �40 such that there
are no �-chains from x to any point in S0.

The use of � chains to represent frequent small
perturbations for biological models has been suggested
previously (Hofbauer et al., 1980; Jacobs and Metz, 2003).
For instance, Hofbauer et al. (1980, p. 286) call states that
persist despite frequent small perturbations cooperative.
For a state x that persists despite frequent small perturba-
tions, there is an �40 such that the distance between f n

ðxÞ

and S0 is always greater than �. Indeed, let �40 be such
that are no �-chains from x to any point in S0. Suppose to
the contrary that there is an n and y 2 S0 such that
dðf n
ðxÞ; yÞo�. Then x ¼ x0;x1 ¼ f ðxÞ;x2 ¼ f 2

ðxÞ; . . . ;xn ¼

f n
ðxÞ;xnþ1 ¼ y is an � chain from x to a point in S0 which

contradicts the assumption that there is no � chain from x

to S0. Therefore, states x that persist despite frequent small
perturbations ensure that there is an invariant set (e.g.
oðxÞ) bounded away from extinction.

In contrast to frequent small perturbations, population
may experience occasional large perturbations. If these
large environmental perturbations never result in the
immediate extinction of the population and initially
the population lies in S1, then after each perturbation the
population state continues to lie in S1. For example if
S ¼ Rk

þ, then a large shake up can correspond to multi-
plying the population state by an arbitrarily small �40. If
the environmental perturbations are sufficiently rare, then
a population in state x will have sufficient time to approach
its o-limit set before experiencing another perturbation.
Hence, we can view rare large perturbations as repeatedly
jumping between o-limit sets for population states in S1.
This description motivates the following definition:

Definition 2. f is persistent despite rare large perturbations if
the closure of [x2S1

oðxÞ does not intersect S0 i.e. there
exist no sequences xn 2 S1 and yn 2 oðxnÞ such that yn

converges to a point in S0 as n!1.
2.2. Non-persistence implies prone to extinction

While it is tautological to state that all systems should
either be persistent or not be persistent, we need to ask
what does ‘‘not persistent’’ mean? Certainly ‘‘not persis-
tent’’ should mean in some sense that the system is prone to
extinction. The complement of both definitions of persis-
tence despite perturbations naturally satisfy this statement.
For a system not persistent despite frequent small
perturbations, every initial population state can be driven
to extinction by arbitrarily small repeated perturbations.
More precisely,

Definition 3. f is prone to extinction due to frequent small

perturbations1 if there are � chains from x to S0 for all �40
and all x 2 S1.

For a system not persistent despite rare large perturba-
tions, there are sequence of rare large perturbations that
asymptotically drive one or more components of the
population to extinction. More precisely,

Definition 4. f is prone to extinction due to rare large

perturbations if the closure of [x2S1
oðxÞ intersects S0 i.e.

there exist sequences xn 2 S1 and yn 2 oðxnÞ such that yn

converges to a point in S0 as n!1.
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2Linearization characterizes stability only generically. Consider, for

example dx=dt ¼ xð1� xÞ3. The equilibrium x ¼ 1 is stable, but lineariza-

tion is inclusive.
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2.3. Generic robustness to structural perturbations

Since it is impossible (and in fact not even desirable) to
account for all the features of a real system, all models are
approximations to reality. In the words of Hall and
DeAngelis (1985, p. 340) (cf. Grimm and Wissel, 1997)
‘‘every situation in nature can be described in an infinite
number of ways. An observer can choose any arbitrary set
of variables and parameters to define an abstract system,
which then can be the object of study by empirical and
theoretical methods.’’ For instance, a modeler may assume
that dynamics of one species is independent of another
when in fact there is a weak interdependence or that the
per-capita growth rates are linear when in fact they are
weakly nonlinear. While these assumptions may simplify
the analysis of determining whether a model is persistent or
extinction prone, they necessitate knowing whether nearby
models (e.g. the possibly more realistic models) are
persistent or extinction prone, respectively. If nearby
models exhibit a different type of behavior (e.g. nearby
models are not persistent despite the focal model being
persistent), then one can draw few (if any!) conclusions
about the persistence of the biological system being
approximated by the model.

Ideally a model classified as persistent remains so
following small structural perturbations of the model.
Consequently, we make the following definitions. A map f

is robustly persistent despite frequent small perturbations

(respectively, despite rare large perturbations) if all dis-
sipative maps g sufficiently near f are persistent to frequent
small perturbations (resp. rare large perturbations). Simi-
larly, a map f is robustly extinction prone due to frequent

small perturbations (respectively, to rare large perturba-

tions) if all dissipative maps g sufficiently near f are
extinction prone due to frequent small perturbations (resp.
rare large perturbations). As any interesting collection of
models has persistent as well as extinction prone systems,
models lying at the boundary of persistence are neither
robustly persistent nor robustly extinction prone. Conse-
quently, it is unreasonable to expect all models to be
robustly persistent or robustly extinction prone. However,
we might hope that maps robustly persistent despite
frequent small (resp. rare large) perturbations or robustly
extinction prone due to frequent small (resp. rare large)
perturbations are dense in the set of dissipative continuous
maps f : S! S satisfying f ðS0Þ � S0.

3. Three candidates

With the two classification schemes (i.e. persistence
despite frequent small versus rare large perturbations) in
hand, how well do various definitions of persistence fare?

3.1. Stable positive equilibrium

Throughout the first half of the 20th century, persistence
was equated with the existence of a positive equilibrium
attractor x̂ i.e. x̂ 2 S1, f ðx̂Þ ¼ x̂, and x̂ is an attractor. This
definition is relatively straightforward to verify for many
models using linearization.2 Since x̂ is a positive attractor
(i.e. an attractor that lies in S1), a standard argument
(Proposition 1 in the Appendix) implies that for any
neighborhood U of x̂ and �40 sufficiently small, all �
chains starting at x̂ remain in U. Choosing U such that it is
compact and disjoint from S0 implies that f is persistent
despite frequent small perturbations. Moreover, if x̂ is
globally stable (i.e. the basin of attraction of x̂ is S1), then
[x2S1

oðxÞ ¼ x̂ and f is persistent despite rare large
perturbations. However, when f has no positive equili-
brium attractor, f need not be extinction prone due to
frequent small perturbations or rare large perturbations.
Consider the classical Lotka–Holling model of predator–-
prey interactions:

dx1

dt
¼ rx1ð1� x1=KÞ �

ax1x2

1þ bax1

dx2

dt
¼

cax1x2

1þ bax1
� dx2 ð1Þ

where x1 and x2 denote prey and predator densities,
respectively, r and K are the intrinsic rate of growth and
carrying capacity of the prey, and a, b, c, and d are the
searching efficiency, mean handling time, conversion
efficiency, and per-capita mortality rate of the predator.
For certain parameter values, this model has an unstable
positive equilibrium and all non-equilibrium positive initial
conditions converge to a positive periodic orbit (Fig. 3).
Since this positive periodic orbit is an attractor, Proposi-
tion 1 in the Appendix implies that for every positive x and
sufficiently small �, there are no �-chains from x to qR2

þ.
Hence, despite not having a positive equilibrium attractor,
this system is not extinction prone due to frequent small
perturbations. Alternatively, since [x2S1

oðxÞ consists of
the positive unstable equilibrium and the stable periodic
orbit, both of which are bounded away from extinction,
this system is also not extinction prone due to rare large
perturbations.

3.2. Positive attractor

An attractor A is positive if A � S1. A standard
argument implies that for any neighborhood U of A and
�40 sufficiently small, all � chains starting at A remain in
U. Choosing U such that it is compact and disjoint from S0

implies that any map f with a positive attractor is persistent
despite frequent small perturbations. Proposition 2 in the
Appendix proves that if f has no positive attractors, then
every point x 2 S �-chains to a point in S0 for every �40.
In other words, if there are no positive attractors, then f is
extinction prone due to frequent small perturbations.
Hence, existence of a positive attractor is equivalent to
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Fig. 3. Dynamics of (1) with r ¼ a ¼ b ¼ c ¼ 1, K ¼ 4, and d ¼ 0:5.
Filled circles correspond to (unstable) equilibria. Dashed curves corre-

spond to population trajectories that converge to the periodic orbit which

is shown as a solid curve.
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persistence despite small perturbations. Moreover, the
author has proven (Schreiber, 2005) that when there are
no positive attractors, small random perturbations result in
extinction with probability one.

To determine whether or not generically a map is
robustly persistent or extinction prone for frequent small
perturbations, recall that continuity implies that if f has a
positive attractor, then continuous maps near f (in the
appropriate C0 topology) have a positive attractor (see, e.g.
Easton, 1998, Theorem 4.A.7). Hence, positive attractors
are robust to perturbations of f. Alternatively, if f does not
have positive attractors, then either f can be approximated
by maps that have a positive attractor or f lies in a open set
of maps with no positive attractors. In either case, f can be
approximated by maps that are robustly persistent despite
frequent small perturbations (i.e. has a positive attractor)
or by maps that are robustly extinction prone due to
frequent small perturbations (i.e. has no positive attractors).

Systems with positive attractors need not be persistent
despite rare large perturbations. For example, population
models that account for mate limitation, cooperative
behavior, or other forms of positive density dependence
may exhibit a strong Allee effect: a positive attractor
coexists with an attractor corresponding to the extinction
of one or more biological components (Allee, 1931; Dennis,
1989; Schreiber, 2003). This Allee effect can be phenom-
enologically modeled by the difference equation f ðxÞ ¼

rxb=ð1þ axbÞ where r is proportional to the maximal fitness
of the population, a accounts for intraspecific competition,
and b accounts for positive density dependence. When
b41 and the maximal fitness is greater than one (i.e.
rðb=aÞ1�1=b=ð1þ bÞ41), there are three equilibria, 0ox�

ox��. When xox�, f n
ðxÞ converges to the stable equili-

brium 0. When x4x�, f n
ðxÞ converges to the stable
equilibrium x��. While f admits a positive attractor, f is
extinction prone due to rare large perturbations as oðxÞ ¼
f0g for all xox�.

3.3. Permanence

f is called permanent (or uniformly persistent) if there
exists �40 such that distance between f n

ðxÞ and S0 is
greater than � for all x 2 S1 and n sufficiently large.
Equivalently, f is permanent if there is a positive attractor
whose basin of attraction is S1. Permanence was initially
formulated by Schuster et al. (1979) in the context of
hypercycles. It was independently formulated and called
uniform persistence by Butler et al. (1986). Since perma-
nence implies the existence of a positive attractor,
permanence implies persistence despite frequent small
perturbations. Moreover, since [x2S1

oðxÞ is contained in
the positive attractor of a permanent system, permanence
implies persistence despite rare large perturbations. Con-
versely, we can prove that if f is not permanent, then f is
extinction prone due to rare large perturbations. To this
end, recall two definitions. An invariant set K is isolated if
there is closed neighborhood U of K such that K is the
largest invariant set in U. For an invariant set K, the stable

set of K is the set of points attracted to K under iterations
i.e. W sðKÞ ¼ fx : oðxÞ � Kg. The Ura–Kimura theorem for
maps (see, e.g. Hofbauer and So, 1989) implies that f is
permanent if and only if S0 is isolated and W sðS0Þ � S0.
Hence, if f is not permanent, then either W sðS0Þ contains
points in S1 or S0 is not isolated. If W sðS0Þ contains points
in S1, then there exists x 2 S1 such that oðxÞ intersects S0.
Alternatively, if S0 is not isolated, then for every
neighborhood U of S0 there is an x 2 U \ S1 such that
oðxÞ � U . Consequently, in either case the closure of
[x2S1

oðxÞ intersects S0. Hence, permanence is equivalent to

persistence despite rare large perturbations.
While a non-permanent system is extinction prone due to

rare large perturbations, it need not be extinction prone
due to frequent small perturbations. For instance, when the
map f ðxÞ ¼ rxb=ð1þ axbÞ with S ¼ Rþ and S0 ¼ f0g
admits a positive stable equilibrium and b41, f is not
permanent as 0 is stable and is not extinction prone due to
frequent small perturbations. Alternatively, consider
S ¼ Rþ, S0 ¼ f0g and f be the time one map for dx=dt ¼

gðxÞ where gð0Þ ¼ 0 and gðxÞ ¼ xðsinð1=xÞ � xÞ for x40
(Fig. 4). This map has a sequence of positive equilibria that
converge to 0. Hence, f is not permanent. Alternatively,
because of this sequence of equilibria, for every x40 there
exists �40 such that f n

ðxÞX� for all nX0. Hence, aside
from populations of low densities remaining at low
densities, this system has no positive states prone to
extinction due to frequent small perturbations.
Several people have developed criteria for robust

persistence despite rare large perturbations (Garay and
Hofbauer, 2003; Hirsch et al., 2001; Schreiber, 2000;
Thieme, 2000). For instance, the author provided necessary
and sufficient criteria for ecological equations of the form



ARTICLE IN PRESS

(0,0,0)

Fig. 5. The Hastings–Powell ‘‘tea-cup’’ attractor for a three species food
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Fig. 4. Graph of gðxÞ ¼ xðsinð1=xÞ � xÞ and dynamics of dx=dt ¼ gðxÞ.

Filled circles correspond to equilibria.

Fig. 6. Community cycling in a five species system consisting of one prey

(e.g. a plant), two predators (e.g. herbivores) and two top predators (e.g.

carnivores). One species invasions can lead to a never ending cycle of

displacements due to apparent competition (i.e. two prey sharing a
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dxi=dt ¼ xigiðxÞ where S ¼ Rn
þ and S0 ¼ fx 2 S :

Qn
i¼1 xi

¼ 0g. The sufficient criteria requires that S0 admits a Morse
decomposition such that max1pipn

R
gi dm40 for any

invariant measure m supported by a component of the
Morse decomposition (for definitions of Morse decom-
positions and invariant measures, see Schreiber, 2000).
Since

R
gi dm ¼ 0 for any species supported by m, this

criterion requires that on average there is a missing species
that can ‘‘invade’’ i.e. have a positive growth rate. Garay
and Hofbauer (2003) have shown that the condition,
max1pipn

R
gi dm40 for all invariant measures m supported

by a compact invariant set K, is equivalent to the existence
of nonnegative weights p1; . . . ; pn such that

Pn
i¼1 pi

1
T

R T

0 gi

ðx:tÞdt403 for all x 2 K and T sufficiently large. In other
words, a weighted sum of the average per-capita growth
rates has to be positive for all initial conditions in K. Using
a more topologically based approach, Hirsch et al. (2001)
have developed related criteria for more general state spaces.

Unfortunately, none of the aforementioned results
provide a definitive characterization of robust persistence
despite rare large perturbations. The underlying reason for
this failure may be due to the fact that generically a system
need not be robustly persistent or robustly extinction prone
in the presence of rare large perturbations. In particular,
Hofbauer and Schreiber (2004) have shown that for S ¼

Rn
þ and S0 ¼ qRn

þ, there is an open (in the C1 topology) set
of ecological differential equations for which a dense subset
are permanent and for which a dense subset are extinction
prone due to rare large perturbations. Ecological differ-
ential equations in this set cannot be approximated by
robustly permanent equations or be approximated by
robustly non-permanent equations. This indeterminacy of
permanence can occur whenever the system has a collection
of subsystems with chaotic attractors that are connected by
population trajectories in a cyclic fashion. For example,
consider a tritrophic community consisting of a prey
species, two predator species, and two top predator species.
Imagine that at least one of the prey–predator–top
3x:t denotes the solution of dxi=dt ¼ xigiðxÞ with the initial condition x.
predator food chains promotes chaotic dynamics e.g. the
tea-cup attractor of Hastings and Powell (1991) as
illustrated in Fig. 5. Moreover, imagine that each top-
predator while consuming both predator species specializes
mainly on one of the two species. Then the ecological
community can cycle between the four prey–predator–top
predator food chains of this community. Top predator and
predator invasions alternatively lead to predator displace-
ment via apparent competition and top predator displace-
ment via exploitative competition (Schreiber and
Rittenhouse, 2004) as illustrated in Fig. 6. For this setup,
one might expect the existence of an open set of ecological
common predator) or due to exploitative competition (i.e. two predators

sharing a common prey).
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models that cannot be approximated by robustly perma-
nent or by robustly non-permanent models.

4. Discussion

Since the pioneering work in the early 20th century of
Lotka and Volterra on competitive and predator–prey
interactions (Lotka, 1925; Volterra, 1926), Thompson,
Nicholson, and Bailey on host–parasite interactions
(Nicholson and Bailey, 1935; Thompson, 1924), and
Kermack and McKendrick (1927) on disease outbreaks,
nonlinear difference and differential equations have been
used to unravel the complexities of biological systems.
Each of these pioneering pieces investigated the persistence
or the long-term survival of the interacting components.
During these formative years, persistence was typically
equated with the existence of a positive stable equilibrium
(Hastings, 1988; May, 1975). While this notion of
persistence is mathematically tractable, is robust to
repeated small perturbations of the state, is generically
robust to structural perturbations of the model, and, in the
words of Jansen and Sigmund (1998, p. 195), ‘‘serves
perfectly well to describe the stability of a control
mechanism or a mixture of chemicals, [it] is not really
appropriate for ecologists brought up on lynx–hare cycles
and the antics of budworm populations.’’ Indeed, since this
definition of persistence only encodes one type of popula-
tion behavior, systems without stable positive equilibria
such as the Holling predator–prey model need not be prone
to extinction. In fact, persistent trajectories despite
frequent small perturbations are possible without the
presence of a positive equilibrium. For instance, in their
classic paper, Armstrong and McGehee (Armstrong and
McGehee, 1980; McGehee and Armstrong, 1977) proved
that two species competing for a limiting resource support
a positive attractor and no positive equilibria. The author
proved a similar phenomena occurs for species sharing a
predator (Schreiber, 2004).

In the mid 20th century, theoretical biologists and
mathematical biologists recognized the diversity of dyna-
mical behaviors that allow long-term survival of all
biological components. In additional to the periodic antics
of predator–prey interactions (Rosenzweig, 1971) and
nerve conduction (Hodgkin and Huxley, 1952), popula-
tions can exhibit quasi-periodic and chaotic dynamics
(Costantino et al., 1997; Hastings et al., 1993; Hastings and
Powell, 1991; May, 1976; Schaffer and Kot, 1986; Turchin
Table 1

Properties satisfied by different definitions of persistence

Persistence

despite FSP

Compliment

+

extinction

prone with FSP

Permanent Yes No

Positive attractor Yes Yes
and Taylor, 1992). Hence, it became natural to equate
persistence or coexistence with the existence of a positive
attractor. This definition is graced by three properties (see
Table 1). First, it assures that there are population
trajectories that remain bounded away from extinction
even in the presence of small repeated perturbations.
Second, if a model has no positive attractors, then all
population trajectories subject to arbitrarily small pertur-
bations are doomed to extinction. Hence, existence of a
positive attractor is equivalent to persistence despite
frequent small perturbations. In particular, this means
that the more general concept of the existence of a positive
chain-transitive attractor or positive quasi-attractor (see,
e.g. Jacobs and Metz (2003)) is unnecessary. Third, positive
attractors persist under small structural perturbations of
the model. Consequently, the generic model is robustly
persistent despite frequent small perturbations or is
robustly extinction prone due to frequent small perturba-
tions. On the negative side, this definition of persistence
places no constraints on the size of the basins of attraction.
If the basin of a positive attractor is extremely small, then
only the smallest perturbations ensure persistence. More-
over, unlike stability of an equilibrium there are no sure fire
methods for verifying that a model supports a positive
attractor. Three approaches to finding attractors are
unfolding bifurcations of equilibria, singular perturbation
analysis of systems that admit a fast–slow decomposition,
and checking for permanence.
Permanence corresponds to the existence of a positive

attractor that attracts all positive population trajectories.
Permanence implies that positive population trajectories
can recover from large perturbations of the state variable.
Hence, permanent populations are more likely to survive
‘‘vigorous shake ups’’ Jansen and Sigmund (1998). More-
over, as permanence implies the existence of a positive
attractor, permanent systems also persist despite frequent
small perturbations. Permanence can be verified by study-
ing the stable sets of boundary dynamics (Butler and
Waltman, 1986; Garay, 1989; Hofbauer and So, 1989) or
using average Lyapunov functions (Hofbauer, 1981;
Hutson, 1984, 1988). On the other hand, despite recent
progress in understanding robustly permanent systems
(Garay and Hofbauer, 2003; Hirsch et al., 2001; Schreiber,
2000; Smith and Zhao, 2001; Thieme, 2000), a complete
topological or Lyapunov-style characterization remains to
be discovered. The difficulty in finding this characterization
is highlighted by the fact that some permanent systems
Persistence

despite RLP

Compliment

+

extinction

prone with FSP

Generically robust

classification

Yes Yes No

No Yes Yes
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cannot be approximated by robustly permanent systems or
robustly non-permanent systems (Hofbauer and Schreiber,
2004). Consequently, classifying systems as persistent or
extinction prone in the presence of rare large perturbations
does not provide a generically robust method for classify-
ing biological models (Hofbauer and Schreiber, 2004).

In conclusion, all definitions of persistence have their
merits and drawbacks. Moreover, the appropriateness of
any particular definition is context dependent. In the words
of Stuart Pimm ‘‘models that withstand severe perturba-
tions might be expected to have features of some real world
systems. . . so might many of the models that cannot
withstand such severe shocks’’ (Pimm, 1982, p. 7).
However, as all real world systems are subject to frequent
small perturbations, a persistent model should support, at
the very least, a positive attractor. If we take this
minimalist view of persistence, we gain a generically robust
classification of biological models. In which case, we can
view permanence or existence of a positive stable equilibria
as particular shades of persistence that refine our under-
standing of the population dynamics.
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Appendix

In this Appendix, we prove two of the results stated in
the main text. Throughout the Appendix, f : S! S is a
continuous dissipative map of a locally compact metric
space S, S ¼ S0 [ S1 where S0 is a closed set, and
f ðS0Þ � S0. Recall, an � chain from x to y of length n is a
set of points x1 ¼ x; x2; . . . ;xn ¼ y such that
dðf ðxiÞ; xiþ1Þo� for i ¼ 1; 2; . . . ; n� 1. The first proposition
(a standard argument provided for the reader’s conve-
nience) implies that maps f with a positive attractor is
persistent despite frequent small perturbations. The second
proposition proves that no positive attractors implies
extinction prone due to frequent small perturbations.

Proposition 1. Let A be an attractor with basin of attraction

BðAÞ and U � V be neighborhoods of A such that the

closure V of V is compact and contained in BðAÞ. Then there

exists NX0 and �40 such that every � chain of length nXN

starting in V ends in U.

Proof. Since A is an attractor, there exists an open
neighborhood W � U of A such that f ðW Þ �W and an
NX1 such that f N
ðV Þ �W . Continuity of f and compact-

ness of V implies that there exists an �140 such that every
�1 chain of length N starting in V ends in W. Let �2 ¼
distðqW ; f ðW ÞÞ where qW is the boundary of W. Since
f ðW Þ �W , every �2 chain starting in W must remain in W.
Let � ¼ minf�1; �2g. Since every � chain of length nXN

starting in V is a concatenation of an � chain of length N

starting in V with an � chain of length n�N starting in W,
all � chains of length nXN starting in V must end in
W � U . &

For x 2 S, define OðxÞ to be the collection of points y 2

S such that for all �40 and nX0 there exists an � chain
from x to y of length at least n.

Proposition 2. If f has no attractors contained in S1, then

OðxÞ \ S0a; for all x 2 S.

Proof. Let x 2 S be given. Since f is dissipative, there exists
a global attractor G such that BðGÞ ¼ S. Let K be the
intersection of all attractors that contain OðxÞ. We begin by
proving that OðxÞ ¼ K . The proof follows Conley (1978)
who proved the analogous statement for continuous flows.
The proof is included for the reader’s convenience. By
definition, OðxÞ � K . To see that K � OðxÞ, define Oðx; �; nÞ
to be the set of points y such that there exists an � chain of
length at least n from x to y. Oðx; �; nÞ is an open set.
Moreover, since G is a global attractor, Proposition 1
implies that Oðx; �; nÞ is compact for �40 sufficiently small
and n sufficiently large. Moreover, we claim that
f ðOðx; �; nÞÞ � Oðx; �; nÞ. Indeed, given z 2 Oðx; �; nÞ, con-
tinuity of f implies that there exists y 2 Oðx; �; nÞ such that
dðf ðzÞ; f ðyÞÞo�. Since y 2 Oðx; �; nÞ, there exists an � chain,
x1 ¼ x;x2; . . . ;xm ¼ y, with mXn. Since dðf ðzÞ; f ðyÞÞo�, we
get that x1 ¼ x; x2; . . . ;xm ¼ y;xmþ1 ¼ f ðzÞ is an � chain
from x to f ðzÞ of length mþ 1. Hence, f ðzÞ 2 Oðx; �; nÞ and
f ðOðx; �; nÞÞ � Oðx; �; nÞ. Since f m

ðOðxÞÞ ¼ OðxÞ � Oðx; �; nÞ
for all m, Að�; nÞ ¼ \mX1f

m
ðOðx; �; nÞÞ is an attractor

containing OðxÞ whenever �40 is sufficiently small and n

is sufficiently large. Hence, K � Að�; nÞ. Since OðxÞ ¼
\nX1;�40Oðx; �; nÞ and OðxÞ � K � Að�; nÞ � Oðx; �; nÞ, we
get OðxÞ ¼ K ¼ \nX1;�40Að�; nÞ.
Suppose that f has no attractors in S1. Let F be the

collection of sets

fA \ S0 : A is an attractor containing OðxÞg.

Since finite intersections of attractors are attractors and f

has no attractors in S1 (i.e. every attractor intersects S0),F
satisfies the finite intersection property. Compactness
of G implies that intersection of all sets in F is non-empty.
Since the intersection of all sets in F is OðxÞ \ S0,
OðxÞ \ S0a;. &
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