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Abstract

Discrete time single species models with overcompensating density dependence and an Allee effect due to predator satiation and
mating limitation are investigated. The models exhibit four behaviors: persistence for all initial population densities, bistability in
which a population persists for intermediate initial densities and otherwise goes extinct, extinction for all initial densities, and
essential extinction in which ‘‘almost every’’ initial density leads to extinction. For fast-growing populations, these models show
populations can persist at high levels of predation even though lower levels of predation lead to essential extinction. Alternatively,
increasing the predator’s handling time, the population’s carrying capacity, or the likelihood of mating success may lead to essential
extinction. In each of these cases, the mechanism behind these disappearances are chaotic dynamics driving populations below a
critical threshold determined by the Allee effect. These disappearances are proceeded by chaotic transients that are proven to be
approximately exponentially distributed in length and highly sensitive to initial population densities.
r 2003 Elsevier Inc. All rights reserved.

1. Introduction

The per-capita growth rate of a species can be broken
down into negative density-dependent, density-indepen-
dent, and positive density-dependent factors. Negative
density-dependent factors include resource depletion
due to competition (Tilman, 1982), environment mod-
ification (Jones et al., 1997), mutual interference (Arditi
and Akcakaya, 1990) and cannibalism (Fox, 1975).
Positive density-dependent factors include predator
saturation, cooperative predation or resource defense,
increased availability of mates, and conspecific enhance-
ment of reproduction (Courchamp et al., 1999; Stephens
and Sutherland, 1999; Stephens et al., 1999; Levitan and
McGovern, in press). Since populations do not grow
without bound, there is growing consensus due to
mathematical and empirical advances that negative
density-dependent factors operate at higher population
densities (Wolda and Dennis, 1993; Turchin, 1995;
Harrison and Cappuccino, 1995). At lower population
densities, any of these factors can dominate. The Allee
effect occurs when positive density-dependence dom-
inates at low densities. When the Allee effect is

sufficiently strong, there is a critical threshold below
which populations experience rapid extinction. Conse-
quently, the importance of the Allee effect has been
widely recognized in conservation biology (Dennis,
1989; Fowler and Baker, 1991; Courchamp et al.,
1999; Stephens and Sutherland, 1999; Stephens et al.,
1999; Lande et al., 2003).

Population with fluctuating dynamics and a strong
Allee effect are especially vulnerable to extinction as the
fluctuations may drive their densities below the critical
threshold. For instance, these combined effects have
been used to explain one of the most dramatic
extinctions of modern times—that of the passenger
pigeon Estopistes migratorius (Stephens and Sutherland,
1999). One source of population fluctuations is a high
intrinsic rate of growth coupled with overcompensating
density dependence. Models of populations with discrete
generations exhibiting these characteristics can exhibit
complex dynamical patterns (May, 1975; Stone, 1993;
Getz, 1996) that have been observed in insect popula-
tions (Turchin and Taylor, 1992; Costantino et al., 1997;
Cushing et al., 1998), annual plant populations (Symo-
nides et al., 1986), and vertebrate populations (Grenfell
et al., 1992; Turchin and Taylor, 1992; Turchin, 1993).

In this article, we examine the interaction between the
Allee effect and overcompensating density dependence

ARTICLE IN PRESS

!Tel.: 757-221-2002; fax: 757-221-2988.
E-mail address: sjs@math.wm.edu.

0040-5809/03/$ - see front matter r 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0040-5809(03)00072-8



in single species models with discrete generations. We
determine under what conditions these combined effects
result in extinction and how the times to extinction
depend on initial conditions. More specifically, we
discuss how the dynamics of these models can be
classified into four types (extinction, bistability, persis-
tence, and essential extinction) and prove that uncer-
tainty in the initial population state can result in
exponentially distributed extinction times. We apply
these results to models that combine the Ricker equation
(Ricker, 1954) with two forms of positive density
dependence corresponding to predator saturation and
mating limitation.

2. Results

The dynamics of populations with synchronized
generations are described by difference equations of
the form

Ntþ1 ¼ Nt f ðNtÞ; ð1Þ

where Nt is the population density at generation t; and
f ðNtÞ represents the per-capita growth rate of the
population. We consider models that are unimodal with
a long tail (Ricker, 1954; May, 1975; Bellows, 1981;
Getz, 1996). Namely, there is a unique positive density C
that leads to the maximum population density M in the
next generation, and extremely large population den-
sities lead to extremely small population densities in the
next generation. For models of this form, two facts are
well-known:

Persistence: If f ð0Þ41 and f ðNÞ40 for all N40; then
for all positive initial densities the popula-
tion persists.

Extinction: If the per-capita growth rate is less than
one for all densities, then extinction occurs
for all initial population densities.

An Allee effect occurs when the per-capita growth rate
increases at low densities (i.e. f 0ðNÞ40 for N sufficiently
small). A strong Allee effect occurs when there is a
positive equilibrium density A such that the per-capita
growth rate is less than one for lower densities (i.e.
f ðNÞo1 for NoA) and is greater than one for some
densities greater than A (see Fig. 1). Whenever popula-
tions fall below this critical threshold, extinction occurs.
Under the assumption that the function gðNÞ ¼ Nf ðNÞ
has a negative Schwartzian derivative (i.e.
g00 0ðxÞ
g0ðxÞ &

3
2
g00ðxÞ
g0ðxÞo0) on the interval ½A;NÞ work of the

author (Schreiber, 2001) can be extended to prove that
the dynamics of (1) with a strong Allee effect fall
generically into two categories:

Bistability: If a population initiated at the maximal
density M exceeds the critical density A in

the next generation (i.e. Mf ðMÞ4A), then
there is an interval of initial population
densities for which the population persists.
For initial densities outside this interval,
extinction occurs (see Figs. 2a–c).

Essential
extinction:

If a population initiated at M falls below A
in the next generation (i.e. Mf ðMÞoA as
illustrated in Fig. 2d), then for almost every
initial population density extinction occurs
(i.e. for a randomly chosen initial condition,
extinction occurs with probability one).

In the case of essential extinction, the negative
Schwartzian derivative hypothesis is necessary to ensure
that almost every initial density goes to extinction.
Without this condition, we are only assured that initial
densities near C lead to extinction and other initial
densities may lead to stable periodic points. In fact, a
f ðNÞ can be constructed by piecing together polyno-
mials such that Nf ðNÞ is unimodal and Mf ðMÞoA; but
Nf ðNÞ has a stable positive equilibrium (Schreiber,
2001). None the less, numerical and symbolic investiga-
tions of many population models (e.g. variants of
Ricker, generalized Beverton-Holt, Logistic, and Hassel
equations) suggest that they all satisfy the negative
Schwartzian derivative hypothesis.

In the case of essential extinction, work of Gyllenberg
et al. (1996) implies that the set of initial densities that
do not lead to extinction define a chaotic repeller, and,
consequently, extinction can be preceded by long-term
chaotic transients. To quantify these transients, let tðNÞ
equal the first generation in which a population initiated
at density N falls below the critical Allee density A (i.e.
tðNÞ ¼ infftX0 : gtðNÞoAg). Using the work of Piani-
giani and Yorke (1979), the appendix proves that the
distribution of extinction times tðNÞ is approximately
exponential. More specifically, if pt is the probability a
population with a randomly chosen initial density from
the interval ½A;M( satisfies tðNÞpt; then there exist

ARTICLE IN PRESS

A C
Nt

M

Nt + 1

Fig. 1. Important quantities associated with (1).
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constants a40 and k40 independent of t such that
expð&atÞ=kpptpk expð&atÞ:

To illustrate these results, we consider two models of
the form

Ntþ1 ¼ Nt expðrð1&Nt=KÞÞIðNtÞ; ð2Þ

where IðNÞ represents a positive density-dependent
factor and expðrð1&N=KÞÞ represents a negative
density-dependent factor. r and K represent the intrinsic
growth rate and the carrying capacity of the population
in the absence of the positive density dependence
(i.e. IðNtÞ ¼ 1).

Perhaps the most common Allee effect occurs in
species subject to predation by a generalist predator
with a saturating functional response. Within such
populations, an individual’s risk of predation decreases
as the population’s density increases. The importance of
this form of positive density dependence is evidenced by
the fact that many prey species have evolved responses
to it. Plants can satiate seed and fruit predators by the
periodic synchronous production of large seed crops, so-
called mast seeding or fruiting. For example, in field
studies Crawley and Long (1995) found that per-capita
rates of acorn loss of Quercus robur L. to invertebrate
seed predators were greatest (as high as 90%) amongst
low acorn crops and lower (as low as 30%) on large
acorn crops. In field studies, Williams et al. (1993) found
that birds generally consumed nearly 100% of the
population as the density of adult cicadas declined in

June, but they consumed proportionately very little of
the standing crop when cicada densities were greater
than 24,000 individuals/ha. Furthermore, predation on
bird eggs and nestlings often decreases with increasing
colony size (Wiklund and Andersson, 1994) and some
fish species form large schools to minimize vulnerability
to predators (Ehrlich, 1975).

To study Allee effects due to predator saturation, let
IðNÞ ¼ expð& m

1þsNÞ be the probability of escaping
predation by a predator with a saturating functional
response where m represents predation intensity and s is
proportional to the handling time (Hassell et al., 1976).
Non-dimensionalizing (2) by setting xt ¼ Nt=K gives

xtþ1 ¼ xt exp rð1& xtÞ &
m

1þ sKxt

! "

ð3Þ

whose dynamics depends exclusively on the quantities r;
sK ; and m:

The per-capita growth for (3) at very low densities is
given by expðr&mÞ (i.e. f ð0Þ ¼ expðr&mÞ). Thus, if
r4m; the populations persist for all initial densities.
Alternatively, if rom; then the zero equilibrium is
stable. Solving for the non-zero equilibria of (3)
results in

x ¼ rðsK & 1Þ7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 & 4msKrþ 2r2sK þ r2sK2
p

2rsK
:

From this expression, we can draw two conclusions.

First, if m4rðsKþ1Þ2
4sK ; or sKo1 and rom; then there are
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Fig. 2. Bifurcation diagrams for (3). In (a), r ¼ 1:0 and in (b), r ¼ 4:5: In the orbital diagrams, a random initial condition x0A½0; 1( for each
parameter value is selected and x100 is plotted. In (c), r ¼ 4:5 and m ¼ 8; and in (d), r ¼ 4:5 and sK ¼ 16:
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no positive equilibria and extinction occurs for all initial

densities. Second, if romorðsKþ1Þ2
4sK and sK41; there are

two positive equilibria. Moreover, since the origin is
stable, the per-capita growth rate for densities below the
smaller equilibrium is less than one.

In the appendix, we show that (3) has a unique critical
point C: To distinguish between the cases of bistability
and essential extinction, we numerically compute
bifurcation diagrams by determining the fate of the
unique critical point C (see Figs. 3a and b). These
diagrams show for slow growing populations, bistability
occurs at intermediate values of m: Alternatively, for
fast growing populations with either a large carrying
capacity or a quickly satiating predator, there are
transitions between bistability and essential extinction.
These transitions are illustrated in the orbital bifurca-
tion diagrams in Figs. 3c and d. Fig. 3c shows that
increasing sK leads to period doubling cascades that
increase demographic variability and culminate in
essential extinction. Fig. 3d shows that populations
can persist at relatively high predation intensities even
though at lower predation intensities the population
experiences extinction. This initially counter-intuitive
transition occurs because decreasing predation intensity
allows populations to achieve higher densities that result
in more extreme population crashes (see Fig. 3).

In the case of essential extinction, extinction can
either occur rapidly or be preceded by long-term chaotic
transients (see Figs. 4a and b). These transients arise
from the existence of a chaotic repeller which exhibits a
fractal like structure and sensitive dependence on initial
conditions. Fig. 4c illustrates that the times to extinction
depend sensitively on initial conditions. As predicted by
our theoretical results, Fig. 4d shows that the extinction

times are nearly exponentially distributed which is
consistent with the observation that the standard
deviation 13.83 and the mean 14.86 of the extinction
times are approximately the same.

2.1. Mating limitation

For many sexually reproducing organisms, finding
mates becomes more difficult at low densities. For
instance, pollination of plants by animal vectors
becomes less effective when patches become too small
because lower densities result is reduced visitation rates
by pollinators (Groom, 1998). Alternatively, species
with low dispersal rates are less likely to encounter
mates at small population sizes. For instance, in a field
experiment, Grevstad (unpublished data) found a
significant difference in mating frequency in low- (42%
mated) versus high-density treatments (95% mated) for
a less mobile species Galerucella pusilla of chrysomeleid
beetle, and found no mating frequency difference in low-
versus high-density treatments of the more mobile
species Galerucella calmariensis. Fertilization by free
spawning gametes of benthic invertebrates can become
insufficient at low densities (Knowlton, 1992; Levitan
et al., 1992; Levitan and McGovern, in press). For
example, in a field experiment Levitan et al. (1992)
found 0% of a small dispersed group of sea urchins
Strongylocentrotus franciscanus were fertilized, while a
82.2% fertilization rate was reported in the center of a
large aggregated group of sea urchins.

To model mate limitation, let IðNÞ ¼ sN
sNþ1 be the

probability of finding a mate where s is an individual’s
searching efficiency (Dennis, 1989; McCarthy, 1997;
Scheuring, 1999). Non-dimensionalizing by setting
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xt ¼ Nt=K ; (2) becomes

xtþ1 ¼ xt expðrð1& xtÞÞ
sKxt

1þ sKxt
ð4Þ

whose the dynamics are determined by the quantities r
and sK: In the appendix, we show that (4) has a unique
critical point C and negative Schwartzian derivative.

To distinguish between the cases of extinction,
bistability, and essential extinction, we numerically
computed bifurcation diagrams (see Figs. 5a and b).
Extinction occurs whenever sK is too small (i.e. mate
finding is difficult). Alternatively, when the intrinsic rate
of growth is sufficiently high and sK sufficiently large,
the population exhibits essential extinction. This result
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asserts that fast-growing species with highly effective
mate finding capabilities are more prone to extinction
than fast-growing species with less effective mate finding
capabilities. Figs. 5c and d show that the extinction
times are sensitive to initial conditions and are
approximately exponentially distributed.

3. Discussion

Examination of simple models of population dy-
namics reveal complex interactions between chaotic
dynamics and Allee effects. Most notably, highly
variable population dynamics coupled with an Allee
effect can lead to extinctions with chaotic transients.
The length of these transients are sensitive to initial
conditions and nearly exponentially distributed.

3.1. Disappearances due predation

The idea that prey population subject to saturating
predation by a generalist predation can exhibit multiple
stable states is not new. To better understand grazing
systems, Noy-Meir (1975) performed a graphical analy-
sis of a continuously reproducing prey population
subject to predation by a predator population of
approximately constant size with a saturating functional
response. Noy-Meir found the dynamics of this system
(excluding the cases allowing for an unconsumable prey
reserve) exhibited three behaviors. At low predation
levels, there is single stable equilibrium at which prey
density is high though lower than the equilibrium
density in the absence of predation. At high predation
levels, extinction is inevitable regardless of initial
population size. At intermediate predation levels, there
are two stable equilibria (i.e. bistability), one corre-
sponding to extinction and the other to persistence,
separated by an unstable equilibrium. This model was
also studied in a review article of May (1977) and in the
context of Allee effects by Dennis (1989). These authors
showed that increasing the maximal predation rate or
decreasing the carrying capacity of the prey population
can lead to population disappearances; there is a critical
break point for these parameters beyond which the
stable equilibrium corresponding intermediate prey
densities suddenly vanishes.

Replacing continuous time with discrete time results
in similar behaviors and also introduces two new
mechanisms of extinction for fast-growing populations.
First, lowering levels of predation can result in essential
extinction despite the fact that at higher levels of
predation the prey population can persist. Second,
enriching the system can lead to essential extinction
and, thereby, provides an alternative form of the
paradox of enrichment (Rosenzweig, 1971). These two
mechanisms have been observed in discrete time models

of populations subject to constant harvesting (Sinha and
Parthasarathy, 1996; Vandermeer and Yodzis, 1999;
Schreiber, 2001). An explanation for these disappear-
ances is that these parameter changes increase the
population’s demographic variability. This variability
results in lower minimum population densities that
coupled with the Allee effect leads to extinction.

3.2. Disappearances due to mating limitation

Previous work on the effects of mating limitation have
shown that mate limitation can lead to population
disappearances when the population’s carrying capacity
or mate finding abilities are pushed below a critical level
(Dennis, 1989; Scheuring, 1999). In studying a broad
class of one-dimensional difference equations including
mate limitation, Scheuring (1999) found that the cost of
rarity can stabilize population dynamics. This conclu-
sion follows from the observation that as the popula-
tion’s carrying capacity or mate finding abilities decrease
the dynamics exhibit a period-halving cascade (Stone,
1993). In contrast, our results show that for populations
with a potential for rapid growth enriching the system or
enhancing the population’s mate finding abilities can
lead to population disappearances that are preceded by
chaotic transients.

3.3. Chaotic transients and population viability

For species that exhibit inherently variable dynamics,
our results suggest that an environmental shift from the
dynamical regime of persistence to eventual extinction
may go unnoticed for hundreds of generations before
the population plunges unexpectedly to extinction
without additional environmental perturbations. These
shifts occur when the parameter changes result in the
basin of attraction of the upper attractor (corresponding
to the population persisting) colliding with the basin of
attraction of the origin (extinction). Following this
collision, the remnants of upper attractor form a chaotic
repeller that lead to long-term chaotic transients. This
mechanism for chaotic transients has been observed in
various ecological models (Hastings and Higgins, 1994;
McCann and Yodzis, 1994; Sinha and Parthasarathy,
1996; Gyllenberg et al., 1996; Vandermeer and Yodzis,
1999; Schreiber, 2001).

Our analysis shows that the time to extinction can be
quite sensitive to initial conditions: small changes in
initial conditions result in large changes in the time to
extinction. Hence, even if ecological system were free
from environmental and demographic stochasticity, just
the slightest uncertainty about the current state of the
ecological system limits our ability to make accurate
predictions about how much time there is to act be-
fore a species vanishes. The times to extinction are
proven to be approximately exponentially distributed.
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Consequently, given the uncertainty about the actual
state of a system, the most likely times to extinction are
short- and long-term transients are rare. Interestingly,
these predictions from these deterministic models coin-
cide with the predictions of stochastic models used for
population viability analysis (Goodman, 1987; Mangel
and Tier, 1994). For stochastic models, extinction is
inevitable due to demographic stochasticity, and the
distribution of extinction times are often approximately
exponentially distributed (Goodman, 1987; Mangel and
Tier, 1994). Thus (Mangel and Tier, 1994, p. 611) ‘‘ in an
‘ensemble world view’ the mean time to extinction’’ in
deterministic models exhibiting essential extinction and
stochastic models ‘‘is achieved by the average of lots of
very rapid extinctions with some very long persistences.’’
These coinciding predictions are not coincidental. A
common mathematical structure underlies these predic-
tions; the existence of conditional invariant distributions
(equivalently quasi-stationary distributions) for the
deterministic and stochastic models. Ideally, future
research in this area will lead to rules of thumb on
how the shape of these distributions (e.g. the mean and
more information about the left-hand side of the
distribution) depend on the general form of the under-
lying non-linearities and demographic stochasticity of
the population dynamics.
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Appendix

In this appendix, we indicate how previous mathe-
matical work (Pianigiani and Yorke, 1979; Gyllenberg
et al., 1996; Schreiber, 2001) apply to the models being
considered, prove that extinction times are approxi-
mately exponentially distributed, partially verify the
technical conditions for the predator satiation model,
and fully verify the technical conditions for the mating
model.

Let g : ½0;NÞ-½0;NÞ be a three times continuous
differentiable function. gðxÞ corresponds to xf ðxÞ in (1).
Assume that g has a unique positive critical point C
(i.e. g0ðCÞ ¼ 0) and that there exists an interval ½a; b(
with b4a40 such that

* gðxÞ40 for all xA½a; b(;
* limn-N gnðxÞ ¼ 0 for all xe½a; b(;

* the Schwartzian derivative of g on ½a; b( is negative:

D3gðxÞ
DgðxÞ & 3

2

D2gðxÞ
DgðxÞ

! "2

o0

for all xA½a; b(:
* There is an AAða; bÞ such that gðAÞ ¼ A and gðxÞax

for all xAð0;AÞ:

Define A! ¼ maxfg&1ðAÞg and M ¼ gðCÞ: Under
these assumptions, prior work of the author
(Schreiber, 2001) can be easily modified to prove the
following:

* Bistability: If gðMÞ4A; then gnðxÞXA for all nX0;
xA½A;A!( and limn-N gnðxÞ ¼ 0 for all xe½A;A!(:

* Essential extinction: If gðMÞoA; then limn-N

gnðxÞ ¼ 0 for Lebesgue almost every x:
* Chaotic semistability: If gðMÞ ¼ A; then the dynamics

of g restricted to ½A;A!( are chaotic (e.g. the
Lyapunov exponent for Lebesgue almost every point
in ½A;A!( is positive) and limn-N gnðxÞ ¼ 0 for all
xe½A;A!(:

To see why the ‘‘times to extinction’’ are approxi-
mately exponentially distributed, assume that gðMÞoA
and define L ¼ fxX0 : tðxÞ ¼ þNg; the set of initial
conditions that do not lead to extinction. Work of
Schreiber (2001) implies that g is expanding near L; there
exist an open neighborhood V of L and constants l41
and c40 such that

jDgnðxÞjXcln

whenever x; gðxÞ;y; gnðxÞAV : Let U be the union of
the connected components of V that intersect L: By
compactness of L; there exist a finite number of these
connected components, call them U1;y;Uk: Proposi-
tion 3.9 of Gyllenberg et al. (1996) implies that dynamics
of g restricted to L are transitive; there exists an xAL
such that fgnðxÞgnX1 is dense in L: It follows that for all
1pi; jpk there exists n such that gnðUiÞ-Uja|:
Theorem 2 of Pianigiani and Yorke (1979) implies there
exists a unique continuous function r :U-½0;NÞ and a
constant L40 such that

*
R

U rðxÞ dx ¼ 1;
* 1=LprðxÞpL for all xAU ; and
* for all Borel subsets E of U ;

Z

E

rðxÞ dx ¼
R

g&1ðEÞ-U rðxÞ dx
R

g&1ðUÞ-U rðxÞ dx
: ðA:1Þ

Eq. (A.1) implies that rðxÞ is the density of a con-
ditionally invariant measure for g: Define Uð0Þ ¼ U and
UðnÞ ¼ g&1ðUðn& 1ÞÞ-U for all nX1: Equivalently,

UðnÞ ¼ fxAU : gðxÞ;y; gnðxÞAUg:
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UðnÞ corresponds to the set of points in U that remain
in U for at least n generations. Define

a ¼ &ln

Z

Uð1Þ
rðxÞ dx

which is positive as
R

Uð1Þ rðxÞ dxo1: Eq. (A.1) and
the definition of UðnÞ implies that

R

Uðnþ1Þ rðxÞ dx ¼
expð&aÞ

R

UðnÞ rðxÞ dx: Hence
R

UðnÞ rðxÞ dx ¼ expð&naÞ
for all nX0: Since 1=LprðxÞpL for all xAU ; it follows
that

Z

UðnÞ

dx

L
pexpð&naÞ ¼

Z

UðnÞ
rðxÞ dxp

Z

UðnÞ
L dx

for all nX1: Therefore,

expð&naÞ=Lp
Z

UðnÞ
dxpL expð&naÞ

for all nX1: Since ½0;M(\U is compact and all orbits
starting in ½0;M(\U eventually enter ½0;AÞ; continuity of
g implies there is an integer iX1 such that giðxÞA½0;AÞ
for all xA½0;M(\U : Choosing k sufficiently large implies
that for all n the probability pn that a randomly chosen
initial condition from ½A;M( enters ½0;A( in more than n
generations is bounded above by k expð&naÞ and
bounded below by expð&naÞ=k:

A.1. The predator saturation model

In this section, we verify all the technical criteria
outlined in the previous section except the negative
Schwartzian hypothesis. Numerical simulations and
partial analysis, however, suggest that the negative
Schwartzian hypothesis is satisfied. Let gðxÞ ¼
x expðrð1& xÞ &m=ð1þ sKxÞÞ:

As discussed in the main text, a strong Allee effect

occurs if and only if romorðsKþ1Þ2
4sK and sK41 in which

case there are two positive equilibria and the per-capita
growth rate for densities below the smaller equilibrium
is less than one. Let A equal the lower positive
equilibrium. To verify that gðxÞ has a unique positive
critical point, a computation of g0ðxÞ shows that it is of
the form pðxÞqðxÞ where pðxÞ40 for all xX0 and qðxÞ ¼
1þ ðsKm& rþ 2sKÞxþ sKðsK & 2rÞx2 & rðsKÞ2x3: The
roots of qðxÞ correspond to the critical points of gðxÞ:
Since sK41 and m4r; q0ð0Þ ¼ sKm& rþ 2sK40: Since
qðxÞ is a cubic with a negative leading coefficient,
qð0Þ40; and q0ð0Þ40; it follows qðxÞ has exactly one
positive real root. Consequently, gðxÞ has a unique
positive critical point. To apply the results of the
previous section, choose a40 to be any number less
than A and b ¼ maxfg&1ðaÞg: Unimodality of g implies
that limn-NgnðxÞ ¼ 0 for all xe½a; b(:

A.2. The mating model

In this section, we verify all the technical criteria for
(4) outlined in the first section of the appendix. Let
gðxÞ ¼ xerð1&xÞ x

bþx where b ¼ 1
sK: The non-negative cri-

tical points of gðxÞ occur at x ¼ 0 and x ¼
1&brþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ6brþb2r2
p

2r : Assume r and b are such that gðxÞ4x
for some x40: Since x ¼ 0 is a critical point and a fixed
point, it is superstable and there is a constant A40 such
that gðAÞ ¼ A and gðxÞox for all xAð0;AÞ: Choose any
aAð0;AÞ: Since gðxÞ approaches 0 as x approaches N
and gðxÞ has a unique positive critical point, there exists
a unique b4a such that gðbÞ ¼ a: Furthermore,
gðxÞA½0;A( for all xA½b;NÞ: Hence, limn-N gnðxÞ ¼ 0
for all xA½b;NÞ: Finally, we verify that g has a negative
Schwartzian derivative on the interval ½a; b(: Taking the
Schwartzian derivative and simplifying, we get

SgðxÞ ¼ &2b2r2x3q1ðxÞ þ r2x4q2ðxÞ þ b2q3ðxÞ
2x2ðrx2 þ ðbr& 1Þx& 2bÞ2

;

where q1ðxÞ ¼ r2x2 & 6rxþ 12; q2ðxÞ ¼ 6& 4rxþ r2x2;
and q3ðxÞ ¼ 12& 24rxþ 24r2x2 & 8r3x3 þ r4x4: Since
q1ð0Þ ¼ 1240 and q1’s discriminant equals &12r2o0;
q1ðxÞ40 for all x: A similar argument implies that
q2ðxÞ40 for all x: Taking the first and second derivative
of q3ðxÞ; we find that q3ðxÞ has a global minimum of

6ð2& 21=3Þ at x ¼ 2&21=3

r : Hence q3ðxÞ40 for all x: It
follows that g has negative Schwartzian derivative.
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