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Abstract

Generalized Polya urn models have been used to model the establishment dynamics of a small founding
population consisting of k different genotypes or strategies. As population sizes get large, these population
processes are well-approximated by a mean limit ordinary differential equation whose state space is the
k simplex. We prove that if this mean limit ODE has an attractor at which the temporal averages of the
population growth rate is positive, then there is a positive probability of the population not going extinct
(i.e. growing without bound) and its distribution converging to the attractor. Conversely, when the temporal
averages of the population growth rate are negative along this attractor, the population distribution does
not converge to the attractor. For the stochastic analog of the replicator equations which can exhibit non-
equilibrium dynamics, we show that verifying the conditions for convergence and non-convergence reduces
to a simple algebraic problem. We also apply these results to selection–mutation dynamics to illustrate
convergence to periodic solutions of these population genetics models with positive probability.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Biological invasions, where a species is introduced in a novel habitat, are occurring repeatedly
throughout the world and often start with small founding population. Whether or not these
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founding populations establish or go extinct in their new environment depends on a diversity
of factors including local environmental conditions, demographic stochasticity, genetic diversity
of the founding population, and nonlinear feedbacks between individuals in the founding
population. One commonly used approach to understanding the roles of the first two factors
is modeling the dynamics of establishment with branching processes [2]. This approach assumes
that individuals survive, grow, and reproduce independently of one another and has provided
fundamental insights into fixation of beneficial alleles [8], the build up of biodiversity on
islands [11], the viability of endangered populations [15], and the evolution of disease emergence
in novel host populations [1,12]. However, even when populations are at low abundance,
individuals may interact with one another (e.g. finding or competing for mates in sexually
reproducing populations) and thereby violate the assumption of independence of these classical
branching processes. When these interactions occur between different types of individuals, they
lead to frequency-dependent feedbacks on the population dynamics.

To account for these frequency-dependent interactions within a founding population,
Schreiber [13] introduced a class of generalized urn models which were studied more exten-
sively by Benaı̈m et al. [5]. These models consider an urn containing a finite number of balls
(the population) of different colors (the different genotypes or phenotypes). At each stage, balls
of possibly different colors can be added or removed from the urn, modeling deaths, births, or
changes of state due to interactions between individuals.

Two key questions about these Markov processes are (a) when is there a positive probability
that the population never goes extinct (i.e. the population establishes)? and (b) on the event of
non-extinction, what can be said about the long-term frequency dynamics? To address these
questions, Schreiber [13] introduced a mean limit ordinary differential equation (ODE) on the
simplex (corresponding to all possible population frequencies) associated with the urn models.
Using these mean field ODEs Benaı̈m et al. [5] proved: (i) if the population is expected to
grow uniformly in the neighborhood of an attractor of this mean limit ODE, then with positive
probability the population never goes extinct and the frequencies of the population converge
to this attractor (see Theorem 2 next section); (ii) conversely if the population is expected to
decrease uniformly in the neighborhood of a given set, then convergence toward this set occurs
with probability zero (see Theorem 3 next section). As the expected growth rate of the population
typically varies along non-equilibrium attractors, these two results, however, are most useful for
equilibrium attractors of the mean limit ODE.

Here, we study the case where the underlying mean limit ODE admits non-equilibrium at-
tractors with non-constant growth rates. As we show in the applications section, this case arises
quite naturally in stochastic models for evolutionary games and population genetics. We extend
the results of Benaı̈m et al. [5] to a more general framework (see Theorems 4 and 5 in Section 3).
Most notably, we replace the assumption of uniform positive (respectively, negative) population
growth near the attractor with the assumption that the temporal average of the population growth
rate is positive (respectively, negative) for initial conditions near the attractor (see assumptions
(7) and (8)).

The remainder of this paper is organized as follows. In next section, we define the class of
generalized urn models, and recall the main results of Benaı̈m et al. [5]. We also discuss the
stochastic approximation methods, and briefly explain how they were used to derive these results.
In Section 3, we state and prove our main results: convergence with positive probability toward
an attractor with average positive growth and non-convergence to an invariant set with negative
average growth. Section 4 is devoted to applications to evolutionary games and population
genetics. The proofs of some technical estimates are given in the Appendix.
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2. Generalized urn models

In Section 2.1 we give the definitions of a class of generalized urn models introduced by
Schreiber [13]. The approach used to study these models is the so-called ODE method, which
relates the asymptotic behavior of a stochastic difference equation to an ODE. This method is
described in Section 2.2.

2.1. The urn models

We consider a finite population consisting of individuals that are one of k types. Therefore,
the state space for this Markov chain is the non-negative cone

Zk
+ = {z = (z1, . . . , zk) ∈ Zk

: zi
≥ 0 for all i}

where Zk is the space of k-tuples of integers. Given a vector w = (w1, . . . , wk) ∈ Zk define

|w| = |w1
| + · · · + |wk

| and α(w) = w1
+ · · · + wk .

We let ∥ · ∥ denote the Euclidean norm on Rk .
Let z(n) = (z1(n), . . . , zk(n)) be a homogeneous Markov chain with state space Zk

+. In our
context, zi (n) corresponds to the number of individuals of type i at the nth update. Associated
with z(n) is the random process x(n) defined by

x(n) =


z(n)

|z(n)|
if z(n) ≠ 0

0 if z(n) = 0

which is the distribution of types in the population at the nth update. When there are no individu-
als in the population at the nth update, we arbitrarily set x(n) to zero which we view as the “null”
distribution. Provided, z(n) is non-zero, the population distribution x(n) lies on the unit simplex

Sk =


x = (x1, . . . , xk) ∈ Rk

: x i
≥ 0,

k
i=1

x i
= 1


.

We let Π : Zk
+ × Zk

+ → [0, 1] denote the transition kernel of the Markov chain z(n).
Specifically,

Π (z, z′) = P[z(n + 1) = z′
|z(n) = z].

Our standing assumptions on the Markov chains z(n) are as follows:

(A1) At each update, there is a maximal number of individuals that can be added or removed. In
other words, there exists a positive integer m such that |z(n + 1) − z(n)| ≤ m for all n.

(A2) There exist Lipschitz maps

{pw : Sk → [0, 1] : w ∈ Zk, |w| ≤ m}

and a real number a > 0 such that

|pw(z/|z|) − Π (z, z + w)| ≤ a/|z|

for all non-zero z ∈ Zk
+ and w ∈ Zk with |w| ≤ m.

Assumption (A2) implies that, as the population gets large, the transition probabilities tend to
only depend on the frequency vector z/|z|.
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2.2. Mean limit ODEs

The following lemma which was proved by Benaı̈m et al. [5] expresses the random process
(x(n))n as a stochastic approximation algorithm.

Lemma 1. Let z(n) be a Markov chain on Zk
+ satisfying assumptions (A1) and (A2) with

mean limit transition probabilities pw : Sk → [0, 1]. Let Fn denote the σ -field generated by
{z(0), z(1), . . . , z(n)}. There exist sequences of random variables {Un} and {bn} adapted to Fn ,
and a real number K > 0 such that

(i) if z(n) ≠ 0, then

x(n + 1) − x(n) =
1

|z(n)|


w∈Zk

pw(x(n))(w − x(n)α(w)) + Un+1 + bn+1


. (1)

(ii) E[Un+1|z(n)] = 0.
(iii) The random variables ∥Un∥ and E[∥Un+1∥

2
|Fn] are uniformly bounded.

(iv) ∥bn+1∥ ≤
K

max{1,|z(n)|}
.

The recurrence relationship (1) can be viewed as a “noisy” Cauchy–Euler approximation
scheme with step size 1/|z(n)| for solving the ordinary differential equation

dx

dt
= g(x) :=


w∈Zk

pw(x)(w − xα(w)). (2)

The limiting behavior of the x(n) is therefore related to the solutions of (2). Indeed, when
the number of individuals in the population grows without bound, the step size decreases to
zero and it seems reasonable that there is a strong relationship between the limiting behavior
of the mean limit ODE and the population distribution x(n). To make the relationship between
the stochastic process x(n) and the mean limit ODE more transparent, it is useful to define a
continuous time version of x(n) where time is scaled in an appropriate manner. Since the number
of events (updates) that occur in a given time interval is likely to be proportional to the size of
the population, we define the time τ(n) that has elapsed by update n as

τ(0) = 0

τ(n + 1) =

τ(n) +
1

|z(n)|
if z(n) ≠ 0

τ(n) + 1 if z(n) = 0.

The continuous time version of x(n) is given by

X (t) = x(n) for τ(n) ≤ t < τ(n + 1). (3)

To relate the limiting behavior of the solutions of (2) to the limiting behavior of X (t), we
need a few more definitions to state a key result of Schreiber [13]. Let x .t denote the solution of
(2) with initial condition x , at time t . A set C is called invariant for (2) provided that C.t = C
(where C.t = {x .t : x ∈ C}) for all t ∈ R. A compact invariant set A ⊂ Sk is an attractor (in the
sense of Conley, see [7]) if there is an open neighborhood U ⊂ Sk of A such that

∩t>0 ∪s≥t U.s = A.
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The basin of attraction B(A) of A is the set of points x ∈ Sk satisfying infy∈A ∥x .t − y∥ → 0
as t → ∞. Finally, a compact invariant set C is internally chain transitive provided that (2)
restricted to C admits no proper attractor.

Given a function X : R+ → Rk or a sequence {x(n)}n≥0 in Rk , we define the limit sets,
L(X (t)) and L(x(n)), of X (t) and x(n) as follows. L(X (t)) is the set of p ∈ Rk such that
limk→∞ X (tk) = p for some subsequence {tk}k≥0 with limk→∞ tk = ∞. L(x(n)) is the set of
p ∈ Rk such that limk→∞ x(nk) = p for some subsequence {nk}k≥0 with limk→∞ nk = ∞.

Using the methods of Benaı̈m [3,4], the following result of Schreiber [13] demonstrates the
relationship between the asymptotic behavior of X (t) and x .t on the event that the population is
growing sufficiently rapid.

Theorem 1 (Schreiber [13]). Let z(n) be a Markov process satisfying the assumptions
of Lemma 1. Then, on the event

n

1

|z(n)|1+a
< ∞, for some a > 0


,

1. the interpolated process X (t) is almost surely an asymptotic pseudotrajectory for the flow of
the mean limit ODE (2). In other words, X (t) almost surely satisfies

lim
t→∞

sup
0≤h≤T

∥X (t).h − X (t + h)∥ = 0 (4)

for any T > 0.
2. the limit set L(X (t)) of X (t) is almost surely an internally chain transitive set for the mean

limit ODE.

The first assertion of the theorem roughly states that X (t) tracks the solutions of the mean
limit ODE (2), with increasing accuracy far into the future. The second assertion of the theorem
states that the only candidates for limit sets of the population distribution x(n) are connected
compact internally chain recurrent sets for the mean limit ODE. With regards to attractors, we
have the following useful property of internally chain recurrent sets (see, e.g., [4, Cor. 5.4]).

Remark 1. If an internally chain transitive set C meets the basin of attraction of a given attractor
A then it is contained in A.

Consider an attractor A for the mean limit ODE. Now suppose that there is a neighborhood
U ⊂ B(A) of A such that whenever the population is large and its distribution x(n) lies in U ,
the population is expected to grow. Specifically, f (x(n)) > 0 whenever x(n) ∈ U where

f (x) =


w

pw(x)α(w)

is the limiting expected change in the population size. Under such circumstances, we would
expect the population to increase in size and, consequently, the frequencies to follow the solutions
of the mean limit ODE more closely. As x(n) lies in the basin of attraction of A, x(n) would tend
to remain near A and the population would be expected to increase further. One would expect that
this positive feedback loop would result in the population growing with positive probability and
its distribution converging to the attractor A. Indeed, as the next theorem shows, this argument
holds when the attractor A is attainable, which basically means that the random process can reach
the basin of attraction of A, at any time. More specifically, we define the set of attainable points,
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Att∞(X), as the set of points x ∈ Sk such that, for all M ∈ N and every open neighborhood U
of x

P[|z(n)| ≥ M and x(n) ∈ U for some n] > 0.

Theorem 2 (Benaı̈m, Schreiber and Tarres [5]). Let z(n) be a generalized urn process
verifying (A1) and (A2). Assume that

λ = inf
x∈A

f (x) > 0. (5)

If B(A) ∩ Att∞(X) ≠ ∅, then

P


lim inf
n

|z(n)|

n
≥ λ and L(x(n)) ⊂ A


> 0.

The next theorem provides a partial converse to Theorem 2. Roughly, it states that if there is
a compact set K ⊂ Sk near which the population is expected to decrease every update, then the
population distribution x(n) cannot converge to K .

Theorem 3 (Benaı̈m, Schreiber and Tarres [5]). Let z(n) be a generalized urn process
verifying (A1) and (A2) and K ⊂ Sk be any compact set. Assume that

sup
x∈K

f (x) < 0. (6)

Then there exists M > 0 such that

P (|z(n)| > M for n large enough and L(x(n)) ⊂ K ) = 0.

3. Main results

While the assumption of uniform growth is not restrictive for equilibrium attractors of the
mean limit ODE, the long-term behavior of these mean limit ODEs may be governed by non-
equilibrium behavior, such as limit cycles, quasi-periodic motions, or chaotic attractors. For these
types of attractors, the growth rate f (x) of a population typically varies along points of the attrac-
tor and, consequently, the uniform growth assumptions (5) and (6) are too restrictive. Throughout
the section, A denotes an attractor for the mean limit ODE, with basin of attraction B(A). Rather
than a uniform growth assumption, we assume that the long-term temporal average of the growth
rate f is positive along orbits of the mean limit ODE. Specifically,

lim inf
t→+∞

1
t

 t

0
f (x .s)ds > 0 for all x ∈ B(A). (7)

Our main result is a generalization of Theorem 2, under this less restrictive positive growth
assumption (7). This result states, roughly, that if the basin of attraction is attainable and the
temporal averages of the growth rate are positive along the attractor, then the population grows
without bound and its distribution converges to the attractor with positive probability.

Theorem 4 (Positive Average Growth and Convergence). Let z(n) be a generalized urn process
satisfying (A1) and (A2). Assume that (7) holds and

B(A) ∩ Att∞(X) ≠ ∅,
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then

P


n

1

|z(n)|1+δ
< +∞ ∀δ > 0, and L(x(n)) ⊂ A


> 0.

Unlike Theorem 2, Theorem 4 can no longer guarantee linear population growth with positive
probability. However, this is not surprising, as the population growth rate can be negative as well
as positive despite having a positive temporal average.

We have a partial converse result to Theorem 4. We say that there is an average negative
growth rate in an invariant compact set K if

lim sup
t→+∞

1
t

 t

0
f (x .s)ds < 0 for all x ∈ K . (8)

Theorem 5 (Negative Average Growth and Non-Convergence). Let z(n) be a generalized urn
process satisfying (A1) and (A2). Assume that (8) holds for a compact invariant set K . Then
there exists M > 0 such that

P [|z(n)| ≥ M for n large enough and L(x(n)) ⊂ K ] = 0.

The proofs of Theorems 4 and 5 are given in Sections 3.2 and 3.3, respectively. Several key
technical estimates required for these proofs are described in 3.1 and proven in the Appendices.

3.1. Key estimates

To state the key estimates for the proofs of our main results, call L f the Lipschitz constant of f
and ∥ f ∥∞ := supx f (x). The map s → f (x .s) is Lipschitz, uniformly in x ∈ K . Consequently,
there exists a constant L ′ > 0 such that

∥ f (x .s) − f (x .s′)∥ ≤ L ′
|s − s′

| for all x ∈ K .

Recall that g(x) =


w pw(x)(w − xα(w)). Let Lg be the Lipschitz constant for g and
∥g∥∞ = sup ∥g(x)∥. Define L = max{L f , Lg, L ′, ∥g∥∞, ∥ f ∥∞}.

Now assume that (x(n))n is a stochastic approximation process which satisfies Eq. (1). Define
∥U∥ = supn ∥Un∥. To simplify the presentation of the proof, we assume that ∥bn∥ = 0. The
proof without this assumption is notationally more cumbersome but follows in a nearly identical
fashion.

Define m(t) = inf{k : τ(k) ≥ t}. Let T0 > 0. We first observe that the population size |z(r)|

remains bounded on time intervals of order T0. Given r0 ∈ N, define rk+1 = m(τ (rk) + T0) for
all k ≥ 1. Provided |z(rk)| is large enough, Benaı̈m et al. [5, Lemma 2] state that

(i) B|z(rk)| ≥ |z(r)| ≥ B−1
|z(rk)| for all r ∈ [rk, rk+1], and

(ii) T0 B−1
|z(rk)| ≤ rk+1 − rk ≤ T0 B|z(rk)|

where B = 3emT0 . Using Gronwall’s inequality, Benaı̈m [4, Proposition 4.1] proved the follow-
ing estimate

sup
r∈[rk ,rk+1]

∥x(rk).(τ (r) − τ(rk)) − x(r)∥ ≤ C (Γ1(k, T0) + Γ2(k, T0)) (9)
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where C is a positive constant, which depends on T0 and L ,

Γ1(k, T0) = sup
r∈[rk ,rk+1−1]

 r
i=rk

U (i + 1)

|z(i)|


and1

Γ2(k, T0) =
2∥g∥∞

inf
r∈[rk ,rk+1]

|z(r)|
.

The next lemma refines the statement of the asymptotic pseudotrajectory property (4) for the
discrete time process x(n). The proof is given in the Appendix.

Lemma 2. Let T0 and δ be positive real numbers. Then we have

P


sup

r∈[rk ,rk+1]

∥x(rk).(τ (r) − τ(rk)) − x(r)∥ > δ| Frk


≤

C0(T0)

|z(rk)|δ2 , (10)

(where C0(T0) := 4∥U∥
2 BC2T0) on the event


|z(rk)| ≥

4BC L
δ


.

The next two propositions roughly underestimate the likelihood that the average growth
1
T0

 T0
0 f (x(r).s)ds remains close of its stochastic counterpart on intervals of time of length T0,

provided the population size is initially large enough. Both proofs are given in the Appendix.

Proposition 1. Let (x(n))n be a stochastic process satisfying (1). Given a point y ∈ Sk , a time
T0 > 0, and δ > 0, there exist a compact neighborhood U of y, C1(T0) > 0, and M1 > 0 such
that

P


1
T0


rk+1−1

r=rk

1
|z(r)|

f (x(r)) −

 T0

0
f (y.s)ds

 > δ

Frk


≤

C1(T0)

|z(rk)|δ2 (11)

on the event Vk := {x(rk) ∈ U } ∩ {|z(rk)| ≥ M1}.

Using the estimate from this proposition, we can get the following result.

Proposition 2. Let (x(n))n be a stochastic process satisfying (1). Given a point y ∈ Sk , a time
T0 > 0, and δ > 0, there exist a compact neighborhood U of y, C2(T0) > 0, and M2 > 0 such
that

P


1
T0


rk+1−1

i=rk

|z(i + 1)| − |z(i)|

|z(i)|
−

 T0

0
f (x(rk).s)ds

 ≥ δ

Frk


≤

C2(T0)

|z(rk)|δ2

on the event Wk := {x(rk) ∈ U } ∩ {|z(rk)| ≥ M2}.

1 In the more general case where ∥b∥ ≠ 0, there is an additional term in Γ2, namely supr∈[rk ,rk+1−1]

r
rk

b(i+1)
|z(i)|

.
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3.2. Proof of Theorem 4

Pick p ∈ B(A) ∩ Att∞(X) and an open neighborhood U of A, which contains p and whose
closure K is compact and included in B(A). Since A is an attractor, there exist a positive time
T ′ and δ > 0 such that, for any T ≥ T ′,

X (t) ∈ U and ∥X (t + T ) − X (t).T ∥ < δ ⇒ X (t + T ) ∈ U.

Also, by assumption (7), there exist a1 > 0 and T ′′ > 0 such that, for any T ≥ T ′′ and x ∈ K ,

1
T

 T

0
f (x .s)ds ≥ a1.

Define T0 = max{T ′, T ′′
}.

Let M > 0 be fixed (we will need M to be greater than some quantity which depends on T0,
m, a1 and δ in a manner that will be specified later in the proof). By the attainability condition,
there exists an index r0 ∈ N such that

P [x(r0) ∈ U, |z(r0)| ≥ M] > 0.

Consider the following events for all k ≥ 1

E1(k) = {|z(rk)| ≥ ζ k−1 B−1 M}; E2(k) = {x(r) ∈ U, for all r ∈ [rk, rk+1]}

where ζ = 1 + a1T0/4. Let E(0) be the event {|z(r0)| ≥ M, x(r0) ∈ U }. For k ≥ 1, define
E(k) = E(k − 1) ∩ E1(k) ∩ E2(k). We will show that there exists a constant F > 0 such that

P[E(k + 1)|E(k)] ≥ 1 − F/Mζ k for all k ≥ 0. (12)

The proof of estimate (12) relies on two ingredients. First, Lemma 3 provides a lower bound to
the probability of being inside U on [rk+1, rk+2] if x(rk) ∈ U . Second, Lemma 4 underestimates
the probability that the population grows sufficiently (namely by a multiplicative parameter
ζ > 1) between times rk and rk+1, provided it stayed in U the entire time. Unlike the work
of Benaı̈m et al. [5], the main issue here is that we do not have expected growth for every update
of the population in the neighborhood of the attractor, so we need to make use of Proposition 2
and the estimates on the population size given above.

Lemma 3. There exist M ′

0 > 0 and D > 0 such that if M ≥ M ′

0, then

P[E2(k + 1)|E(k)] ≥ 1 −
D

Mζ k−1

for all k ≥ 0.

Proof. Statement (i) in Section 3.1 implies that |z(r)| ≥ B−2
|z(rk)| for r ∈ [rk, rk+2].

Furthermore, the definition of rk implies that T0 ≤ τ(rk+1) − τ(rk) ≤ 2T0 which implies
4T0 ≥ τ(r) − τ(rk) ≥ T0 for r ∈ [rk+1, rk+2]. Statements (i) and (ii) in Section 3.1 also
imply that rk+2 − rk ≤ 2B2T0|z(rk)| and rk+2 ≤ m(τ (rk) + 3T0).

On the event E1(k), |z(r)| ≥ |z(rk)|B−2
≥ ζ k−1 B−3 M for all r ∈ [rk, rk+2]. Therefore, we

can apply Lemma 2 with 3T0 and |z(rk)| ≥ ζ k−1 B−3 M which gives, choosing M ′

0 large enough
and M greater than M ′

0,

P


sup

r∈[rk+1,rk+2]

∥x(rk).(τ (r) − τ(rk)) − x(r)∥ > δ | Frk


≤

B3C0(3T0)

δ2 Mζ k−1 .
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Since τ(rk+1) − τ(rk) ≥ T0 and x(rk) ∈ U , our choice of T0 and δ implies that x(r) ∈ U for all
r ∈ [rk+1, rk+2], on the event

sup
r∈[rk+1,rk+2]

∥x(rk).(τ (r) − τ(rk)) − x(r)∥ ≤ δ


.

Defining D = B3C0(3T0)/δ
2, we therefore have

P[E2(k + 1)c
| E(k)] ≤

D

Mζ k−1 . �

Lemma 4. There exist M ′′

0 ≥ M ′

0 and D′ > 0 such that if M ≥ M ′′

0 , then

P[E1(k + 1) | E(k)] ≥ 1 −
D′

Mζ k−1

for all k ≥ 1.

Proof. On the event E1(k + 1)c
∩ E(k), we have

nk := |z(rk+1)| − |z(rk)| ≤ ζ k B−1 M − ζ k−1 B−1 M = B−1 Mζ k−1(a1T0/4).

Under the constraint that one cannot add more balls than this fixed quantity between times rk and
rk+1, we prove the following inequality in the Appendix

rk+1−1
i=rk

|z(i + 1)| − |z(i)|

|z(i)|

≤
nk

|z(rk)|
+

m

2
(rk+1 − rk)


1

B−1|z(rk)|
−

1

B−1|z(rk)| + m


. (13)

Consequently, since rk+1 − rk ≤ T0 B|z(rk)|,

rk+1−1
i=rk

|z(i + 1)| − |z(i)|

|z(i)|
≤ B−1 Mζ k−1(a1T0/4)

1
|z(rk)|

+
T0 B|z(rk)|m2

2(B−2|z(rk)|2)

≤
a1T0

4
+

T0 B3m2

2M
.

Hence, choosing M greater than M ′′

0 := max{M ′

0, 2T0 B3m2/a1},

1
T0

rk+1−1
i=rk

|z(i + 1)| − |z(i)|

|z(i)|
<

a1

2
.

Recall that, by definition of T0,

1
T0

 T0

0
f (x(rk).s)ds ≥ a1.

Hence, on the event E1(k + 1)c
∩ E(k), we have

1
T0


rk+1−1

i=rk

|z(i + 1)| − |z(i)|

|z(i)|
−

 T0

0
f (x(rk).s)ds

 ≥
a1

2
.
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Finally, by Proposition 2 and provided M ′′

0 is large enough, we have

P

E1(k + 1)c

| E(k)


≤
4C2(T0)

a2
1 |z(rk)|

.

The proof is complete, taking D′
=

4C2(T0)B
a2

1
. �

Now choose M larger than M ′′

0 . By Lemmas 3 and 4, and denoting F = D + D′ > 0, we have

P[E(k + 1)|E(k)] ≥ 1 −
F

Mζ k−1

for all k ≥ 0. Since the sequence of event {E(k)}k is decreasing, it follows that

P


lim
k→∞

E(k)


≥ P[E(0)]


1 −

∞
k=1

F

Mζ k−1



≥ P[E(0)]


1 −

ζ F

M(ζ − 1)


.

On the event limk→∞ E(k), we have for any δ > 0

+∞
i=1

1

|z(i)|1+δ
=

r0
i=1

1

|z(i)|1+δ
+

∞
k=1

rk+1
i=rk+1

1

|z(i)|1+δ

≤

r0
i=1

1

|z(i)|1+δ
+

∞
k=1


max

rk+1≤i≤rk+1

1
|z(i)|δ

×

rk+1
i=rk+1

1
|z(i)|



≤

r0
i=1

1

|z(i)|1+δ
+ T0

∞
k=1

max
rk+1≤i≤rk+1

1
|z(i)|δ

≤

r0
i=1

1

|z(i)|1+δ
+ T0

∞
k=1

1

(B−1|z(rk)|)δ

≤

r0
i=1

1

|z(i)|1+δ
+ T0

∞
k=1

1

(ζ k−1 B−2 M)δ

=

r0
i=1

1

|z(i)|1+δ
+ T0 B2δ M−δ ζ δ

ζ δ − 1
< ∞.

Hence the definition of E2(k) implies that

P[C] ≥ P[E(0)]


1 −

ζ F

M(ζ − 1)


> 0,

where

C =


+∞
i=1

1

|z(i)|1+δ
< ∞, ∀δ > 0 and x(n) ∈ U ∀n


.

On the event C, Theorem 1 implies that L({x(n)}) is a compact internally chain recurrent set for
the mean limit ODE. Since L({x(n)}) ⊂ K ⊂ B(A) on the event C, Remark 1 and Theorem 1
imply that L({x(n)}) ⊂ A. �
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3.3. Proof of Theorem 5

By assumption (8), there exist an open neighborhood U of K , T0 > 0 and a1 > 0 such that

1
T0

 T0

0
f (x .s)ds < −a1 for all x ∈ U.

Let M2 given by Proposition 2 and choose M > max{M2, |z(0)|}. Define

Tℓ = inf {n ≥ ℓ : x(rn) ∉ U or |z(rn)| < M} .

Then

{L((x(n))n) ⊂ K , |z(n)| ≥ M for n large enough } ⊂


ℓ∈N∗

{Tℓ = +∞}. (14)

For large enough M , we prove that P[Tℓ = +∞] = 0 for all ℓ.
By Proposition 2, there exists α > 0 which depends on T0 and a1 such that

P


1
T0

rk+1−1
i=rk

|z(i + 1)| − |z(i)|

|z(i)|
≥ −a1/2


≤

α

|z(rk)|

for any k ≥ ℓ, on the event Tℓ > k. Let N (i) = |z(i+1)|−|z(i)|. On the event
rk+1−1

i=rk

N (i)
|z(i)| < 0,

we claim that

rk+1−1
i=rk

N (i)

|z(i)|
≥

|z(rk+1)| − |z(rk)|

B−1|z(rk)| + 1
. (15)

To prove this inequality, let us first assume that by contradiction |z(rk+1)| − |z(rk)| ≥ 0. Then in
the interval of time from rk to rk+1, more balls were added than removed. Therefore, for every
ball removed when the number of balls is |z(i)| for some rk ≤ i ≤ rk+1, there is ball added when
the number of balls is at most |z(i)|−1. Consequently

rk+1−1
i=rk

N (i)/|z(i)| > 0, a contradiction.
Hence |z(rk+1)| − |z(rk)| < 0: more balls are removed than added. For every ball that is added
when the number of balls is |z(i)| for some rk ≤ i ≤ rk+1, a ball is removed when the state is at
least |z(i)| + 1. Now the remaining |z(rk)| − |z(rk+1)| balls were removed when the number of
balls was at least B−1

|z(rk)| + 1. This proves (15). As a consequence

|z(rk+1)| − |z(rk)| ≤ B−1
|z(rk)|

rk+1−1
i=rk

N (i)

|z(i)|

and

|z(rk+1)| − |z(rk)| ≤ B−1
|z(rk)|

−a1T0

2
with probability greater than 1 − α/|z(rk)| on the event {Tℓ > k}. Moreover, |z(rk+1)| − |z(rk)|

can never be larger than rk+1 − rk < T0 B|z(rk)|. Hence,

E

|z(rk+1)| − |z(rk)| | Tℓ > k


≤

−a1T0|z(rk)|

2B


1 −

α

|z(rk)|


+ T0 B|z(rk)|

α

|z(rk)|

≤ |z(rk)|
−a1T0

2B
+

αa1T0

2B
+ T0 Bα

≤ −ϵ|z(rk)| ≤ −ϵM
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for some ϵ > 0. The remainder of the proof is similar to the proof of Benaı̈m et al. [5, Proposition
2]: for n > ℓ we have

0 ≤ E(|z(rn∧Tℓ
)|) =

n
k=l+1

E[|z(rk∧Tℓ
)| − |z(r(k−1)∧Tℓ

)|] + E(|z(rℓ)|)

=

n
k=l+1

E

|z(rk)| − |z(rk−1)| | Tℓ ≥ k


P[Tℓ ≥ k) + E(|z(rℓ)|]

≤ −ϵM
n

k=l+1

P[Tℓ ≥ k] + E[|z(rℓ)|].

Taking the limit as n → ∞, we get that


∞

k=ℓ+1 P[Tℓ ≥ k] ≤ E[|z(rℓ)|]/ϵM . The Borel–
Cantelli lemma implies that P[Tℓ = ∞] = 0. Relation (14) implies that

P[{L(x(n)) ⊂ K } ∩ {|z(n)| ≥ M for n large enough}] = 0. �

4. Applications

To illustrate the applicability of our results, we examine stochastic analogs of two well-
known evolutionary dynamics: replicator dynamics from evolutionary game theory [14,10] and
selection–mutation dynamics from population genetics [9,6,10].

4.1. Replicator processes

Consider a population consisting of individuals playing k different strategies. In the absence
of interactions, each individual produces offspring at rate b and dies at rate d. Each individual
initiates an encounter with another individual at rate ν. Individual encounters are random. If
an individual with strategy i initiated an encounter with an individual with strategy j , then the
individual with strategy i either gives birth with probability bi j , dies with probability di j or is
unaffected by the encounter with probability ui j = 1 − bi j − di j . Similarly, the individual with
strategy j gives births, dies, or is unaffected with probabilities b j i , d j i , and u j i . While this de-
scription yields a continuous-time Markov chain z̃(t), we focus on the embedded discrete-time
Markov chain z(n) corresponding to the state of z̃(t) at the nth update via a birth, death, or en-
counter between two individuals. We note that the probability of unbounded population growth
(i.e. non-extinction) and convergence of the population distribution to a particular set in Sk are
equal for the embedded and continuous-time processes. Hence, for the questions we are inter-
ested in, there is no loss of information by restricting our attention to the discrete-time model.

Let e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, 0, . . . , 0), . . . , ek = (0, . . . , 0, 0, 1) be the standard
basis of Rk . At each update, z(n) can change either by one individual giving birth (+ei ) possibly
following an encounter, one individual dying (−ei ) possibly following an encounter, or pairs of
births or deaths following an encounter between individuals (ei − e j , −ei − e j or ei + e j for
i, j ∈ {1, 2, . . . , k}). Setting γ =

1
b+d+ν

, the limiting transition functions pw, as |z| → ∞, are
defined by

pei (x) = γ xi


b + 2ν

k
j=1

x j bi j u j i


pei +e j (x) = 2γ νxi x j bi j b j i for i ≠ j
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p2ei (x) = γ νx2
i b2

i i

pei −e j (x) = 2γ νxi x j bi j d j i for i ≠ j

and analogously for p−ei , p−ei −e j and p−2ei . The transition functions, Π (z, z + w), for the
non-limiting process z(n) are given by pw(x =

z
|z| ) with the exception that

Π (z, z + 2ei ) = γ νxi
(xi |z| − 1)

|z|
b2

i i

(and analogously for −2ei ) to ensure that these interactions are between different individuals
playing the same strategy i .

Let B = (bi j )i, j and D = (di j )i, j be the birth and death matrices. The mean limit ODE for
the process is given by

dx

dt
=


w

pw(x)(w − xα(w)) = 2νγ x ◦


(B − D)x − xT (B − D)x


(16)

where ◦ denotes the Hadamard product. Setting A = 2νγ (B − D) yields the standard form of
the replicator equations [10]:

dx

dt
= x ◦ (Ax − xT Ax). (17)

Two key results for these equations described by Hofbauer and Sigmund [10] are the following.

Theorem 6. Let A be a k × k matrix. If there exist p1, . . . , pk > 0 such that

k
i=1

pi


(Ax)i − xT Ax


> 0

for all equilibria of (17) lying on the boundary ∂Sk of the simplex, then there exists an attractor
A for (17) whose basin of attraction is Sk\∂Sk .

Theorem 7. Let A be a k×k matrix. If there exists a compact invariant set K ⊂ Sk\∂Sk for (17),
then there exists a unique positive equilibrium x̂ ∈ Sk\∂Sk such that

lim
t→∞

1
t

 t

0
(x .s) ds = x̂

and

lim
t→∞

1
t

 t

0
(x .s)T A(x .s) ds = x̂T Ax̂

for any solution of (17) with initial condition in K .

These two theorems in conjunction with our main results Theorems 4 and 5, imply the
following result. We recall that F is a face of Sk if there exists a set I ⊂ {1, . . . , k} such that
F = {x ∈ Sk : xi = 0 for i ∈ I }.

Theorem 8. Let z(n) be a replicator process with b > 0 and d > 0 and


i zi (0) > 0. Define
A = 2νγ (B − D) as above. Let F be a face of the simplex Sk . If there exist p1, . . . , pk > 0 such
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that 
i ∉I

pi


(Ax)i − xT Ax


> 0 (18)

for all equilibria x ∈ ∂ F and

b − d

b + d + ν
+ x̂T Ax̂ > 0 (19)

for the interior equilibrium x̂ ∈ F\∂ F, then there exists a compact set A in F\∂ F such that

P


n

1

|z(n)|1+δ
< ∞ for all δ > 0 and L({x(n)}n) ⊂ A


> 0.

Alternatively, if K is a compact, invariant subset of F\∂ F and

b − d

b + d + ν
+ x̂T Ax̂ < 0 (20)

for the interior equilibrium x̂ ∈ F\∂ F, then there exists M > 0 such that

P [|z(n)| ≥ M for n sufficiently large and L({x(n)}n) ⊂ K] = 0.

Proof. To prove the first assertion, assume that F is a face of the simplex Sk such that (18) holds.
Since


i zi (0) > 0 and d > 0, there is a positive probability that z(n) lies in the interior of the

face F at some update n ≥ 1. Hence, without loss of generality and by shifting time, we assume
that z(0) lies in the interior of F . Theorem 6 implies that there is an attractor A in the interior of
F for the replicator dynamics restricted to F and B(A) equals the interior of F . The assumptions
that b > 0 and d > 0 imply that B(A) is attainable. Assumption (19) and Theorem 7 imply there
is average positive growth rate in B(A) i.e. (7) holds. Applying Theorem 4 completes the proof
of the first assertion.

To prove the second assertion, assumption (20) and Theorem 7 imply there is average neg-
ative growth rate at K i.e. (8) holds. Applying Theorem 5 completes the proof of the second
assertion. �

To illustrate the use of this result, we consider the hypercycle replicator equations featured
in [10, Chapter 12]. In this game of k strategies, interactions between an individual playing
strategy i with individuals playing strategy i − 1 (n in the case i = 1) catalyze births. These
interactions occur at rate ν, while births and deaths independent of interactions occur at rates b
and d, respectively. The birth and death matrices associated with interactions are given by

B =


0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
· · · · · · ·

0 0 0 · · 1 0

 and D = 0. (21)

For the replicator equation (17) with A = 2νγ (B − D), Hofbauer and Sigmund [10, Theorem
12.1.2] prove that there is a globally stable equilibrium x̂ = (1/k, 1/k, . . . , 1/k) in Sk\∂Sk for
k ≤ 4. In contrast, for k ≥ 5, this equilibrium is unstable see, e.g., [10, Section 12.1] and there
is a global, non-equilibrium attractor A ⊂ Sk\∂Sk which attracts all initial conditions in Sk\∂Sk
except those on the stable manifold of x̂ [10, Theorem 12.3.1].
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Fig. 1. Sample trajectories of the replicator process x(n) with b = 1, d = 2.5, ν = 4, n = 5, B and D given by Eqs.
(21). Since (b − d + 2ν/5)/(b + d + ν) = 1/75 > 0, there is growth and convergence with positive probability to
an equilibrium attractor a non-equilibrium attractor for n = 5 (A). In (B), oscillations of the growth function along the
stochastic trajectory are shown. The dashed line corresponds to the equilibrium value 1/75 of the growth function.

For our stochastic analog of this replicator dynamic, we get growth and convergence with
positive probability to one of the vertices whenever b > d . When b − d + 2ν/n > 0, we
get growth and convergence with positive probability to x̂ whenever n ≤ 4 and growth and
convergence with positive probability to the non-equilibrium attractor A whenever n ≥ 5.
Moreover, if n ≥ 5, b − d < 0 and b − d + 2ν/n > 0 is sufficiently close to zero,
then we conjecture that there are points in A where the growth function f (x) =

b−d
b+d+ν

+

2ν
b+d+ν

(x1xn + x2x1 + · · · + xn−1xn−2 + xn xn−1) is negative. In this case, our Theorem 4 im-
plies convergence with positive probability while Theorem 2 from the earlier work of Benaı̈m
et al. [5] would not. Fig. 1 illustrates converge to the non-equilibrium attractor for n = 5 and the
oscillations exhibited in the growth function f (x).

4.2. Selection–mutation processes

Two key evolutionary processes are natural selection in which there is differential survival
or reproduction amongst genetically distinct individuals and mutation in which parents produce
offspring with novel genotypes from their own. A simple, continuous time deterministic model
of these processes acting simultaneously on populations tracks the gametes of the populations
and assumes that selection acting on diploid individuals and mutation acting on gametes occur
independently of one another. While this simplification is somewhat unrealistic, it turns out to be
sufficiently realistic to provide useful insights and, for our purposes, illustrates how urn models
can be used in the context of population genetics.

We consider a population of haploid individuals (gametes) with a single locus with k possible
alleles, A1, . . . , Ak . All gametes die at a constant rate d > 0 and fuse with another gamete at a
constant rate ν > 0. When two gametes, say of types Ai and A j , fuse to produce an individual
with genotype Ai A j they produce, on average, fi j/2 gametes of type Ai and fi j/2 gametes
of type A j . For each pair i, j , let Bi j (1), Bi j (2), . . . be a sequence of independent, identically
distributed random variables taking values in {0, 2, . . . , 2m} and satisfying E[Bi j (n)] = fi j/2.
At the nth fusion of a gamete of type i and j , Bi j (n) gametes of type i and j are added to the
population. Gametes of type i mutate to type j at rate µi j > 0. Namely, on this event, a gamete
of type i is replaced with a gamete of type j . Let µ =


i≠ j µi j be the total mutation rate.

As in the case of the replicator processes, we are interested in the discrete-time embedded
stochastic process where z(n) is the state of the population immediately following the nth
demographic event. This process has three types of demographic events: a gamete is removed



M. Faure, S.J. Schreiber / Stochastic Processes and their Applications 125 (2015) 3053–3074 3069

due to death (−ei ), a gamete changes types due to mutation (ei − e j for i ≠ j), or new gametes
are added to the population due to births following the fusing of two gametes (l(ei +e j ) for some
l ≤ m). Setting γ =

1
d+µ+ν

, the limiting transition functions pw, as |z| → ∞, corresponding to
these transitions are defined by

pe j −ei (x) = γµi j xi for i ≠ j

p−ei (x) = γ dxi

pℓ(ei +e j )(x) = γ νxi x j P[Bi j (n) = 2ℓ] for ℓ ∈ {0, 1, . . . , m}.

The transition functions, Π (z, w), for the actual process z(n) are given by pw(x =
z
|z| , w) with

the exception that the terms x2
i =

z2
i

|zi |
2 are replaced by xi (xi |z|−1)/|z| to ensure that interactions

between different individuals playing the same strategy i also take place.
Let F = ( fi j )i, j and M = (µi j )i, j . Then the mean limit ODE for z(n) is given by the

mutation–selection equation [10, Section 20.1]

dx

dt
= γ νx ◦ (Fx − xT Fx) + γµ(MT x − x). (22)

Hofbauer [9] proved that the selection–mutation equation for (22) can exhibit gradient-like
dynamics or non-equilibrium dynamics depending on the mutation rates. For example, the
following result shows that if rate of mutating to gamete type j is the same for all gamete types,
then the dynamics are gradient-like.

Theorem 9 (Hofbauer [9]). If µi j = µ j for all i ≠ j , then all solutions x(t) of (22) converge
to the set of equilibria of (22).

Using the earlier work, Theorems 2 and 3 of Benaı̈m et al. [5], we get the following corollary:

Corollary 1. Assume that µi j = µ j for all i ≠ j and F, M are such that (22) has a finite
number of stable, hyperbolic equilibria x̂1, . . . , x̂m of which x̂1, . . . , x̂s with s ≤ m are linearly
stable. The fertility selection process x(n) grows and converges to x̂i for some 1 ≤ i ≤ s with
positive probability if

ν x̂T
i Fx̂i > d.

Furthermore, on the event of linear growth, x(n) converges to x̂i for some 1 ≤ i ≤ s.

Without the strong assumption on mutation rates, the selection–mutation dynamics can give
rise to non-equilibrium dynamics. When this occurs, the following result is useful.

Corollary 2. Assume (22) has a stable periodic attractor A ⊂ Sk\∂Sk of period T . Let x .t
denote a solution of (22) with x ∈ A. If

ν

T

 T

0
(x .t)T F(x .t) > d (23)

and x ∈ Sk\∂Sk , then

P


n

1

|z(n)|1+δ
< +∞ ∀δ > 0, and L(x(n)) ⊂ A


> 0.
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Fig. 2. The dynamics of the selection–mutation process resulting in a limit cycle as described in the text. Trajectories of
the mean limit ODE shown in black. A stochastic trajectory is shown in red. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Alternatively, if inequality (23) is reversed, then

P [|z(n)| ≥ M for n large enough and L(x(n)) ⊂ A] = 0.

Hofbauer [9] illustrated how selection–mutation equations for k = 3 alleles can lead to
oscillatory dynamics. Specifically, assume all heterozygous Ai A j with i ≠ j have the same
fitness, i.e. fi j = f for all i ≠ j , all homozygotes Ai Ai have the same fitness, i.e. fi i = f + s
for all i , and the mutation rates are cyclic symmetric, i.e. µi j = µi− j where

2
i=0 µi = 1 and the

index i is considered as a residue modulo 3. If µ1 ≠ µ2 and s is slightly larger than 9
2 (µ1 + µ2),

then there is a stable periodic orbit (of say period T ). Assume x lies on this periodic orbit. If

ν

T

 T

0
s∥x .t∥2dt + ν f > d

then Corollary 2 implies that there is a positive probability the population grows and its
distribution converges to this periodic orbit. Convergence with positive probability to a periodic
orbit is illustrated in Fig. 2. Conversely, if

ν

T

 T

0
s∥x .t∥2dt + ν f < d

then the population distribution cannot converge to this periodic orbit.
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Appendix

In this Appendix, we prove some of the key technical lemmas and estimates used in the proofs
of our main results.

A.1. Proof of Lemma 2

On the event

|z(rk)| ≥

4BC L
δ


, we have Γ2(k, T0) ≤

2
B−1|z(rk )|

≤ δ/2C . By (9), the left

expression in (10) is smaller than

P

Γ1(k, T0) ≥

δ

2C

Frk


.

On the other hand, we have

E

Γ1(k, T0)

2
| Frk


≤ E


rk+1−1

r=rk

∥U∥
2

|z(r)|2



≤
∥U∥

2

B−1|z(rk)|
E


rk+1−1

r=rk

1
|z(r)|



≤
BT0∥U∥

2

|z(rk)|
,

and (10) holds. �

A.2. Proof of Proposition 1

By the Markov property, it suffices to prove the estimate for k = 0 with x(0) = x ∈ U . Define
M1 = max{3B(L + 1/T0)/δ, 12L2 BC/δ}. We have

1
T0


 T0

0
f (x .s)ds −

m(T0)−1
r=0

1
|z(r)|

f (x .τ (r))


≤

1
T0

τ(r+1)
r=0

 τ(r+1)

τ (r)

f (x .s)ds −
1

|z(r)|
f (x .τ (r))

+ 1
T0


 τ(m(T0))

T0

f (x .s)ds


≤

1
T0

m(T0)−1
r=0

 τ(r+1)

τ (r)

f (x .s)ds −
1

|z(r)|
f (x .τ (r))

+ 1
T0

(τ (m(T0)) − T0)

≤
1
T0

m(T0)−1
r=0

 τ(r+1)

τ (r)

∥ f (x .s)ds − f (x .τ (r))∥ ds +
1
T0

1
|z(m(T0))|

≤
1
T0

m(T0)−1
r=0

 τ(r+1)

τ (r)

L|τ(r + 1) − τ(r)|ds +
1
T0

1
|z(m(T0))|

≤
1
T0

m(T0)−1
r=0

L

|z(r + 1)|2
+

1
T0

1
|z(m(T0))|
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≤
1

|z(0)|
(B(L + 1/T0))

≤
δ

3

on the event V0.
Since

1
T0

m(T0)−1
r=0

1
|z(r)|

( f (x .τ (r)) − f (x(r)))

 ≤ L sup
0≤r≤m(T0)−1

∥x .τ (r) − x(r)∥.

Lemma 2 implies

P


1
T0

m(T0)−1
r=0

1
|z(r)|

( f (x .τ (r)) − f (x(r)))

 ≥ δ/3


≤

9L2C0(T0)

|z(0)|δ2

on the event V0.
Finally,

1
T0

 T0

0
f (x .s) − f (y.s)ds

 ≤ L sup
0≤s≤T0

∥x .s − y.s∥ ≤
δ

3

for x ∈ U by choosing U to be a sufficiently small neighborhood of y.
These three estimates plus the triangle inequality complete the proof of the proposition, with

C1(T0) = 9L2C0(T0). �

A.3. Proof of Proposition 2

By the Markov property, it suffices to prove the estimate for k = 0 with x(0) = x ∈ U . Define
N (i) = |z(i + 1)| − |z(i)|, D(i) = N (i) − E[N (i)|z(i)] and

G =
1
T0

m(T0)−1
i=0

D(i)

|z(i)|
.

Observe that |D(i)| ≤ 2m. Therefore

E

G2

|z(0)


≤
1

T 2
0

E


m(T0)−1

i=0

D(i)2

|z(i)|2
| z(0)



≤
4m2 B2

T 2
0 |z(0)|2

m(T0) ≤
4m2 B3

T0|z(0)|

where we have used the fact that T0 B−1
|z(0)| ≤ m(T0) ≤ T0 B|z(0)| (see point (ii) before

Proposition 2). Chebyshev’s inequality implies

P


|G| ≥

δ

3
| z(0)


≤

36m2 B3

T0|z(0)|δ2 . (24)

Let C1(T0) and M1 be as defined by Proposition 1. Notice that, by definition of f and
assumption (A2), we have

|E(N (i) | z(i)) − f (x(i))| ≤
a

|z(i)|
.
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Hence,

1
T0

m(T0)−1
i=0

E(N (i) | z(i)) − f (x(i))

|z(i)|

 ≤
aBT0

|z(0)|
≤

δ

3

provided M2 is large enough.
Consequently, Proposition 1 with a δ value of δ/3 and inequality (24) imply

P


1
T0

m(T0)−1
i=0

N (i)

|z(i)|
−

 T0

0
f (x(0).s)ds

 ≥ δ | z(0)



≤ P


1
T0

m(T0)−1
i=0

D(i)

|z(i)|

 ≥
δ

3
| z(0)



+ P


1
T0

m(T0)−1
i=0

f (x(i))

|z(i)|
−

 T0

0
f (x(0).s)ds

 ≥
δ

3
| z(0)



≤
36m2 B3

T0|z(0)|δ2 +
9C1(T0)

|z(0)|δ2 ≤
C2(T0)

|z(0)|δ2

on the event W0 with M2 ≥ M1 large enough and C2(T0) = 9C1(T0) +
36m2 B3

T0
. �

A.4. Proof of claim (13)

Let us prove (13):

rk+1−1
i=rk+1

N (i)

|z(i)|
≤

nk

B−1|z(rk)|
+

m

2
(rk+1 − rk)


1

B−1|z(rk)|
−

1

B−1|z(rk)| + m


(25)

where nk = |z(rk+1)| − |z(rk)|. Assume without loss of generality that nk > 0. For every ball
which is removed between times τ(rk) and τ(rk+1) when state is z(r), a ball is added when the
state is at least |z(r)| − m. The quantity

1
|z(r)| − m

−
1

|z(r)|

is maximal when |z(r)| − m is minimal, and z(r) − m can never be smaller than B−1
|z(rk)| for

r ∈ [rk, rk+1−1]. Moreover there is at most m(rk+1−rk)/2 balls removed in the process. Finally
the remaining nk balls were added when the state was at least B−1

|z(rk)|. A very rough upper
bound is given by (25). �
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